Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Luminescence ; 39(5): e4770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751216

RESUMEN

The ultimate goal of nanoparticle-based phototherapy is to suppress tumor growth. Photothermal therapy (PTT) and photothermal photodynamic therapy (PDT) are two types of physicochemical therapy that use light radiation with multiple wavelength ranges in the near-infrared to treat cancer. When a laser is pointed at tissue, photons are taken in the intercellular and intracellular regions, converting photon energy to heat. It has attracted much interest and research in recent years. The advent of transition materials dichalcogenides (TMDCs) is a revolutionary step in PDT/PTT-based cancer therapy. The TMDCs is a multilayer 2D nano-composite. TMDCs contain three atomic layers in which two chalcogens squash in the transition metal. The chalcogen atoms are highly reactive, and the surface characteristics of TMDCs help them to target deep cancer cells. They absorb Near Infrared (NIR), which kills deep cancer cells. In this review, we have discussed the history and mechanism of PDT/PTT and the use of TMDCs and nanoparticle-based systems, which have been practiced for theranostics purposes. We have also discussed PDT/PTT combined with immunotherapy, in which the cancer cell apoptosis is done by activating the immune cells, such as CD8+.


Asunto(s)
Neoplasias , Fotoquimioterapia , Terapia Fototérmica , Elementos de Transición , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Elementos de Transición/química , Elementos de Transición/farmacología , Calcógenos/química , Calcógenos/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Animales
2.
Toxicol Appl Pharmacol ; 479: 116728, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858873

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men. To elucidate the connection between trace elements (arsenic: As, cadmium: Cd, lead: Pb, chromium: Cr, and nickel: Ni) and the risk of PCa, we analyzed trace element levels in the serum, urine, and tissues of PCa patients, while also examining their smoking status. We correlated these levels with their smoking habits. Notably, levels of Cd (P ≤ 0.05) and As (P ≤ 0.01) were significantly higher in the tumor tissue than in adjacent tissues. No significant differences were observed in the levels of Pb, Cr and Ni. Additionally, urinary Cd levels in 70% and arsenic levels in 2.3% of the PCa cohort were markedly higher than the CDC-reported cutoff (Cd ≤ 0.185 µg/L & As ≤100 µg/L). None displayed elevated levels of urinary Pb, Cr, and Ni. Conversely, in serum samples, the concentration of arsenic exceeded the CDC-determined limit (As ≤1.0 µg/L) in 31.69% of PCa patients. However, only 7.04% of patients had higher serum Cd levels than the CDC standard values (Cd ≤ 0.315 µg/L), while all PCa patients exceeded the Cr CDC limit (Cr ≤ 0.16 µg/L) and the Ni CDC limit (Ni ≤ 0.2 µg/L). On the contrary, no significant differences were observed in serum Pb (Pb ≤ 35.0 µg/L). Our findings establish a positive link between Cd and arsenic tissue concentrations and the risk of PCa. Subsequent studies are essential to determine whether elevated trace element levels pose a risk for the development of prostate carcinogenesis. Interestingly, among the PCa cohort comprising smokers, notably higher Cd levels were observed only in tumor tissues (P ≤ 0.01) and urine (P ≤ 0.05) compared to other elements or in other specimens.


Asunto(s)
Arsénico , Metales Pesados , Neoplasias de la Próstata , Oligoelementos , Masculino , Humanos , Oligoelementos/orina , Cadmio/orina , Arsénico/orina , Plomo , Monitoreo del Ambiente , Neoplasias de la Próstata/epidemiología , Metales Pesados/análisis
3.
Vet Parasitol Reg Stud Reports ; 41: 100871, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37208080

RESUMEN

Dirofilaria immitis is a mosquito-borne filarioid nematode that affects dogs and cats. Although heartworm infections in cats can be fatal, it is commonly neglected by cat owners and veterinarians. Moreover, diagnosing heartworm infection in cats can be challenging, requiring the integration of multiple laboratorial tests and clinical examination. The objective of this study was to estimate the occurrence of D. immitis infection in shelter cats in the Lower Rio Grande Valley (RGV) region of Texas using a combination of immunodiagnostic and molecular methods. The RGV has a large population of stray animals with limited access to veterinary care. One hundred and twenty-two paired samples of serum and DNA extracted from the blood clots of cats from 14 towns in this region were analyzed. Serum samples were used for heartworm antibody detection (Heska® Solo Step®), and heartworm antigen detection using a commercial ELISA kit (DiroCHEK®) pre- and post-immune-complex dissociation (ICD) via heat treatment. A species-specific probe-based qPCR assay targeting a fragment of the cytochrome oxidase c subunit 1 of the mitochondrial DNA was utilized to detect the presence of parasite DNA. Twenty-two cats (18%) were positive in at least one diagnostic test. Antibody testing detected most cases (19/122; 15.6%); pre- and post-ICD antigen testing detected 6 cases (6/122; 4.9%); and qPCR detected the fewest cases (4/122; 3.3%), with 2 cats positive on all three diagnostic tests. Veterinarians should encourage local cat owners to utilize year-round heartworm prevention.


Asunto(s)
Enfermedades de los Gatos , Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Gatos , Animales , Perros , Texas/epidemiología , Enfermedades de los Gatos/diagnóstico , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Perros/parasitología , Dirofilariasis/diagnóstico , Dirofilariasis/epidemiología , Dirofilariasis/parasitología
4.
Curr Mol Med ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231732

RESUMEN

RESEARCH BACKGROUND: Breast cancer is the second leading cause of death all over the world and is not only limited to females but also affects males. For estrogen receptor-positive breast cancer, tamoxifen has been considered the gold-line therapy for many decades. However, due to the side effects associated with the use of tamoxifen, its use is only limited to individuals in high-risk groups and limits its clinical application to moderate and/or lower-risk groups. Thus, there is a necessity to decrease the dose of tamoxifen, which can be achieved by targeting the drug to breast cancer cells and limiting its absorption to other body parts. PROBLEM STATEMENT: Artificial antioxidants used in the formulation preparation are assumed to upsurge the risk of cancer and liver damage in humans. The need of the hour is to explore bio-efficient antioxidants from natural plant sources as they are safer and additionally possess antiviral, anti-inflammatory, and anticancer properties. Objectives of the study and research: The objective of this hypothesis is to prepare tamoxifen-loaded PEGylated NiO nanoparticles using green chemistry, tumbling the toxic effects of the conventional method of synthesis for targeted delivery to breast cancer cells. Significance of the research work: The significance of the work is to hypothesize a green method for the synthesis of NiO nanoparticles that are eco-friendly, cost-effective, decrease multidrug resistance, and can be used for targeted therapy. Garlic extract contains an organosulfur compound (Allicin) which has drug-metabolizing, anti-oxidant, and tumour growth inhibition effects. In breast cancer, allicin sensitizes estrogen receptors, increasing the anticancer efficacy of tamoxifen and reducing offsite toxicity. Thus, this garlic extract would act as a reducing agent and a capping agent. The use of nickel salt can help in targeted delivery to breast cancer cells and, in turn, reduces drug toxicity in different organs. Future directions/recommendations: This novel strategy may aim for cancer management with less toxic agents acting as an apt therapeutic modality.

5.
PLoS One ; 18(4): e0283665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37018233

RESUMEN

This study aimed to assess heavy metals in the surface sediments of the Bharalu river, India. Metal concentrations ranged from 6.65-54.6 mg/kg for Ni, 25.2-250.0 mg/kg for Zn, 83.3-139.1 mg/kg for Pb, and 11940.0-31250.0 mg/kg for Fe. The level of metal contamination was assessed using sediment quality guidelines, geo-accumulation index (Igeo), enrichment factor (EF), pollution Load Index (PLI),Nemerow's pollution index (PIN), and potential ecological risk index. Pb exceeded the sediment quality guidelines at all sites indicating a potential threat to the river ecosystem. (Igeo) and EF also showed moderate to severe enrichment for Pb. Potential ecological risk (RI) showed low risk in the sediments, and Pb is the major contributor to ecological risk. Overall, pollution indices revealed comparably higher contamination of the sediments in the downstream sites than in the upstream site. PCA and correlation matrix analysis indicated both anthropogenic and natural origins for metals. Among anthropogenic sources, urban discharges and waste dumping could be mainly attributed to metal contamination in the river sediments. These findings may aid in developing future river management methods explicitly aimed at tackling heavy metal pollution to prevent further damage to the river ecosystem.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Ecosistema , Contaminantes Químicos del Agua/análisis , Plomo/análisis , Sedimentos Geológicos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , India , Medición de Riesgo , China
6.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903587

RESUMEN

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Ratas , Animales , Nanopartículas de Magnetita/química , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Hierro , Portadores de Fármacos , Nanopartículas/química , Hierro , Óxidos
7.
Crit Rev Microbiol ; 49(6): 815-833, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36394607

RESUMEN

Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Probióticos/uso terapéutico , Etanol
8.
J Biomater Sci Polym Ed ; 34(5): 674-694, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345958

RESUMEN

Non-targeted cancer therapy poses a huge risk to the cancer patients' life due to high toxicity offered by chemotherapy. Breast carcinoma is one of such deleterious disease, demanding a highly effectual treatment option which could reduce the toxicity and extend survival rate. Since, folate receptors extensively display themselves on the cancer cell surface, targeting them would help to ameliorate the progression and metastasis. Considering this, we envisaged and developed sulforaphane loaded folate engineered microbeads to target breast cancer cells over-expressing folate receptors. The surface engineered microbeads were optimized and developed using emulsion gelation technique, among which the best developed preparation demonstrated the particle size of 1302 ± 3.98 µm, % EE of 84.1 ± 3.32% and in vitro drug release of 98.1 ± 4.42%@24h. The spherical sized microbead showed controlled release with improved haem-compatibility in comparison to the bare drug. Free radical scavenging activity by ABTS assay showed strong anti-oxidant activity (IC50 20.62 µg/ml) of the targeted microbeads with profound cancer cell sup pressing effect (IC50 17.48 ± 3.5 µM) as observed in MCF-7 cells by MTT assay. Finally, in comparison to lone SFN, the targeted therapy showed enhanced uptake by the intestinal villi indicating a suitable oral targeted therapy against breast carcinoma.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microesferas , Ácido Fólico , Portadores de Fármacos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Antineoplásicos/farmacología
10.
Biomed Res Int ; 2022: 3618197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033562

RESUMEN

Mesothelioma is a form of cancer that is aggressive and fatal. It is a thin layer of tissue that covers the majority of the patient's internal organs. The treatments are available; however, a cure is not attainable for the majority of patients. So, a lot of research is being done on detection of mesothelioma cancer using various different approaches; but this paper focuses on optimization techniques for optimizing the biomedical images to detect the cancer. With the restricted number of samples in the medical field, a Relief-PSO head and mesothelioma neck cancer pathological image feature selection approach is proposed. The approach reduces multilevel dimensionality. To begin, the relief technique picks different feature weights depending on the relationship between features and categories. Second, the hybrid binary particle swarm optimization (HBPSO) is suggested to automatically determine the optimum feature subset for candidate feature subsets. The technique outperforms seven other feature selection algorithms in terms of morphological feature screening, dimensionality reduction, and classification performance.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Algoritmos , Humanos
11.
Mol Ther Nucleic Acids ; 29: 691-704, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35992044

RESUMEN

Emerging viral diseases, such as Ebola, SARS, MERS, and the pathogen causing COVID-19, SARS-CoV-2, present a challenge for the development of therapeutics because of strict biosafety handling procedures and rapid mutation of their genomes. To facilitate the development of an adaptable and testable therapeutic model system, a colostrum exosome-based nanoparticle delivery system, EPM (exosome-PEI matrix), that overcomes stringent biosafety containment, was used to mimic the expression of viral proteins. This system would greatly expand the number of laboratories actively participating in the screening of potential therapeutics. EPM technology can deliver both plasmid DNA and siRNA to both simulate viral gene expression and screen potential antiviral siRNA therapeutics. Using this nanoplatform, three key SARS-CoV-2 proteins (the spike glycoprotein, nucleocapsid, and replicase) were expressed in vitro and in vivo. In vitro, several viral gene-targeting siRNAs were screened to determine knockdown efficiency, with some siRNA duplexes resulting in 80%-95% knockdown of corresponding protein expression. Moreover, in vivo experiments introducing the spike protein and nucleocapsid by EPM resulted in the production of antibodies against the viral antigen, measured up to 45 d after target delivery. Together, these findings support the efficacy of the EPM delivery system to establish a model for screening antiviral therapeutics-reduced biosafety level.

12.
Biomed Res Int ; 2022: 9112587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898684

RESUMEN

Prostate cancer is one of the most common cancers in men worldwide, second only to lung cancer. The most common method used in diagnosing prostate cancer is the microscopic observation of stained biopsies by a pathologist and the Gleason score of the tissue microarray images. However, scoring prostate cancer tissue microarrays by pathologists using Gleason mode under many tissue microarray images is time-consuming, susceptible to subjective factors between different observers, and has low reproducibility. We have used the two most common technologies, deep learning, and computer vision, in this research, as the development of deep learning and computer vision has made pathology computer-aided diagnosis systems more objective and repeatable. Furthermore, the U-Net network, which is used in our study, is the most extensively used network in medical image segmentation. Unlike the classifiers used in previous studies, a region segmentation model based on an improved U-Net network is proposed in our research, which fuses deep and shallow layers through densely connected blocks. At the same time, the features of each scale are supervised. As an outcome of the research, the network parameters can be reduced, the computational efficiency can be improved, and the method's effectiveness is verified on a fully annotated dataset.


Asunto(s)
Redes Neurales de la Computación , Neoplasias de la Próstata , Diagnóstico por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Clasificación del Tumor , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Reproducibilidad de los Resultados
13.
J Mol Graph Model ; 115: 108213, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35594655

RESUMEN

Li-ion batteries (LIB) are an integral part of portable electronic gadgets. Enhancing the performance of LIB is an active area of research. Here, we investigated the lithiation properties of pure and C-doped BN (BCN) nanosheets using density functional theory. Our calculations show that adsorption energy (Ead) significantly improves via C-doping and it is reciprocal to Li concentration. Depending on Ead, BCN exhibits a wider range of theoretical specific capacity and open circuit voltage (OCV). We obtained a remarkable specific capacity of 778.50 mAhg-1 with an OCV of 0.72 V. A significant charge transfer (0.3e) is also witnessed from Li to nanosheet at local level. A semiconductor to metallic transition is also predicted for higher Li coverage, which pledges for enhanced rate capability. Molecular dynamic analysis indicates that BCN recovers the structural deformations during charging and discharging process. Present calculations show that BCN could be a promising anode material in LIB.

14.
Environ Sci Pollut Res Int ; 29(5): 7240-7253, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34467495

RESUMEN

This study investigated the human risk of infection due to inadvertent ingestion of water during swimming in a river that receives SARS-CoV-2-containing effluent from a wastewater treatment plant (WWTP). A quantitative microbial risk assessment (QMRA) approach was applied for risk estimation using dose-response models (DRM) of different surrogate coronaviruses (SARS-CoV-1, MERS-CoV) and the virus responsible for most infectious respiratory illnesses (i.e., influenza A H5N1) due to the unavailability of DRM for SARS-CoV-2. The ratio of infectious concentration to genomic copies of SARS-CoV-2 is unknown and also unavailable for other coronaviruses. Therefore, literature-based information on enteric viruses was used for formulating the ratio used for QMRA, although it is acknowledged that identifying this information for SARS-CoV-2 is a priority, and in the absence of information specific to SARS-CoV-2, another coronavirus would be a preferable surrogate to the enteric viruses used here. The calculated concentration of ingested SARS-CoV-2 ranged between 4.6 × 10-7 and 80.5 genomic copies/dip (one swim = 32 mL). The risk of infection (> 9 × 10-12 to 5.8 × 10-1) was found to be > 1/10,000 annual risk of infection. Moreover, the study revealed that the risk estimation was largely dependent on the value of the molecular concentration of SARS-CoV-2 (gc/mL). Overall immediate attention is required for obtaining information on the (i) ratio of infectious virus to genomic copies, (ii) DRM for SARS-CoV-2, and (iii) virus reduction rate after treatment in the WWTPs. The QMRA structure used in present findings is helpful in analyzing and prioritizing upcoming health risks due to swimming performed in contaminated rivers during the COVID-19 outbreak.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Humanos , Medición de Riesgo , SARS-CoV-2 , Aguas Residuales , Agua
15.
Cancers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34944868

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is the only systemic treatment option. Although chemotherapeutic drugs respond initially in TNBC, many patients relapse and have a poor prognosis. Poor survival after metastatic relapse is largely attributed to the development of resistance to chemotherapeutic drugs. In this study, we show that bilberry-derived anthocyanidins (Anthos) can inhibit the growth and metastasis of TNBC and chemosensitize paclitaxel (PAC)-resistant TNBC cells by modulating the NF-κB signaling pathway, as well as metastatic and angiogenic mediators. Anthos administered orally significantly decreased MDA-MB-231 orthoxenograft tumor volume and led to lower rates of lymph node and lung metastasis, compared to control. Treatment of PAC-resistant MDA-MB-231Tx cells with Anthos and PAC in combination lowered the IC50 of PAC by nearly 20-fold. The combination treatment also significantly (p < 0.01) decreased the tumor volume in MDA-MB-231Tx orthoxenografts, compared to control. In contrast, Anthos and PAC alone were ineffective against MDA-MB-231Tx tumors. Our approach of using Anthos to inhibit the growth and metastasis of breast cancers, as well as to chemosensitize PAC-resistant TNBC, provides a highly promising and effective strategy for the management of TNBC.

16.
Cancers (Basel) ; 13(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34359601

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) is the most common type accounting for 84% of all lung cancers. Paclitaxel (PAC) is a widely used drug in the treatment of a broad spectrum of human cancers, including lung. While efficacious, PAC generally is not well tolerated and its limitations include low aqueous solubility, and significant toxicity. To overcome the dose-related toxicity of solvent-based PAC, we utilized bovine colostrum-derived exosomes as a delivery vehicle for PAC for the treatment of lung cancer. Colostrum provided higher yield of exosomes and could be loaded with higher amount of PAC compared to mature milk. Exosomal formulation of PAC (ExoPAC) showed higher antiproliferative activity and inhibition of colony formation against A549 cells compared with PAC alone, and also showed antiproliferative activity against a drug-resistant variant of A549. To further enhance its efficacy, exosomes were attached with a tumor-targeting ligand, folic acid (FA). FA-ExoPAC given orally showed significant inhibition (>50%) of subcutaneous tumor xenograft while similar doses of PAC showed insignificant inhibition. In the orthotopic lung cancer model, oral dosing of FA-ExoPAC achieved greater efficacy (55% growth inhibition) than traditional i.v. PAC (24-32% growth inhibition) and similar efficacy as i.v. Abraxane (59% growth inhibition). The FA-ExoPAC given i.v. exceeded the therapeutic efficacy of Abraxane (76% growth inhibition). Finally, wild-type animals treated with p.o. ExoPAC did not show gross, systemic or immunotoxicity. Solvent-based PAC caused immunotoxicity which was either reduced or completely mitigated by its exosomal formulations. These studies show that a tumor-targeted oral formulation of PAC (FA-ExoPAC) significantly improved the overall efficacy and safety profile while providing a user-friendly, cost-effective alternative to bolus i.v. PAC and i.v. Abraxane.

19.
Cancer Lett ; 505: 58-72, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33610731

RESUMEN

Gene therapy promises to revolutionize biomedicine and personalized medicine by modulating or compensating the expression of abnormal genes. The biggest obstacle for clinical application is the lack of an effective, non-immunogenic delivery system. We show that bovine colostrum exosomes and polyethyleneimine matrix (EPM) delivers short interfering RNA (siRNA) or plasmid DNA (pDNA) for effective gene therapy. KRAS, a therapeutic focus for many cancers, was targeted by EPM-delivered KRAS siRNA (siKRAS) and inhibited lung tumor growth (>70%) and reduced KRAS expression (50%-80%). Aberrant p53 is another therapeutic focus for many cancers. EPM-mediated introduction of wild-type (WT) p53 pDNA (pcDNA-p53) resulted in p53 expression in p53-null H1299 cells in culture, subcutaneous lung tumor, and tissues of p53-knockout mice. Additionally, chemo-sensitizing effects of paclitaxel were restored by exogenous WT p53 in lung cancer cells. Together, this novel EPM technology represents an effective 'platform' for delivery of therapeutic nucleic acids to treat human disease.


Asunto(s)
Exosomas , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Neoplasias/terapia , Animales , Línea Celular Tumoral , Femenino , Genes p53 , Terapia Genética/efectos adversos , Humanos , Ratones , Ratones Endogámicos C57BL , Polietileneimina/química , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/genética
20.
J Chem Phys ; 154(2): 024907, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33445903

RESUMEN

Recent experiments on the return to equilibrium of solutions of entangled polymers stretched by extensional flows [Zhou and Schroeder, Phys. Rev. Lett. 120, 267801 (2018)] have highlighted the possible role of the tube model's two-step mechanism in the process of chain relaxation. In this paper, motivated by these findings, we use a generalized Langevin equation (GLE) to study the time evolution, under linear mixed flow, of the linear dimensions of a single finitely extensible Rouse polymer in a solution of other polymers. Approximating the memory function of the GLE, which contains the details of the interactions of the Rouse polymer with its surroundings, by a power law defined by two parameters, we show that the decay of the chain's fractional extension in the steady state can be expressed in terms of a linear combination of Mittag-Leffler and generalized Mittag-Leffler functions. For the special cases of elongational flow and steady shear flow, and after adjustment of the parameters in the memory function, our calculated decay curves provide satisfactory fits to the experimental decay curves from the work of Zhou and Schroeder and earlier work of Teixeira et al. [Macromolecules 40, 2461 (2007)]. The non-exponential character of the Mittag-Leffler functions and the consequent absence of characteristic decay constants suggest that melt relaxation may proceed by a sequence of steps with an essentially continuous, rather than discrete, spectrum of timescales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA