Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunity ; 57(7): 1514-1532.e15, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38788712

RESUMEN

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.


Asunto(s)
Muerte Celular Inmunogénica , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Humanos , Animales , Ratones , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de los fármacos , Necroptosis/efectos de los fármacos , Necroptosis/inmunología , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Inmunoterapia/métodos
2.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587076

RESUMEN

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Asunto(s)
Trastornos Congénitos de Glicosilación , Fosfotransferasas (Fosfomutasas)/deficiencia , Humanos , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Complemento C4 , Glicopéptidos , Biomarcadores , Polisacáridos
3.
J Proteome Res ; 20(9): 4566-4577, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34428048

RESUMEN

Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.


Asunto(s)
Proteínas Tirosina Quinasas , Transducción de Señal , Biotinilación , Unión Proteica , Proteínas Tirosina Quinasas/genética
4.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298619

RESUMEN

Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma.

5.
J Proteome Res ; 20(1): 670-683, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986951

RESUMEN

KRAS is one of the most frequently mutated genes across all cancer subtypes. Two of the most frequent oncogenic KRAS mutations observed in patients result in glycine to aspartic acid substitution at either codon 12 (G12D) or 13 (G13D). Although the biochemical differences between these two predominant mutations are not fully understood, distinct clinical features of the resulting tumors suggest involvement of disparate signaling mechanisms. When we compared the global phosphotyrosine proteomic profiles of isogenic colorectal cancer cell lines bearing either G12D or G13D KRAS mutation, we observed both shared as well as unique signaling events induced by the two KRAS mutations. Remarkably, while the G12D mutation led to an increase in membrane proximal and adherens junction signaling, the G13D mutation led to activation of signaling molecules such as nonreceptor tyrosine kinases, MAPK kinases, and regulators of metabolic processes. The importance of one of the cell surface molecules, MPZL1, which was found to be hyperphosphorylated in G12D cells, was confirmed by cellular assays as its knockdown led to a decrease in proliferation of G12D but not G13D expressing cells. Overall, our study reveals important signaling differences across two common KRAS mutations and highlights the utility of our approach to systematically dissect subtle differences between related oncogenic mutants and potentially lead to individualized treatments.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Alelos , Neoplasias Colorrectales/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación , Fosfoproteínas , Fosfotirosina , Proteómica , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Anal Chem ; 92(21): 14466-14475, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33079518

RESUMEN

A data-independent acquisition (DIA) approach is being increasingly adopted as a promising strategy for identification and quantitation of proteomes. As most DIA data sets are acquired with wide isolation windows, highly complex MS/MS spectra are generated, which negatively impacts obtaining peptide information through classical protein database searches. Therefore, the analysis of DIA data mainly relies on the evidence of the existence of peptides from prebuilt spectral libraries. Consequently, one major weakness of this method is that it does not account for peptides that are not included in the spectral library, precluding the use of DIA for discovery studies. Here, we present a strategy termed Precursor ion And Small Slice-DIA (PASS-DIA) in which MS/MS spectra are acquired with small isolation windows (slices) and MS/MS spectra are interpreted with accurately determined precursor ion masses. This method enables the direct application of conventional spectrum-centric analysis pipelines for peptide identification and precursor ion-based quantitation. The performance of PASS-DIA was observed to be superior to both data-dependent acquisition (DDA) and conventional DIA experiments with 69 and 48% additional protein identifications, respectively. Application of PASS-DIA for the analysis of post-translationally modified peptides again highlighted its superior performance in characterizing phosphopeptides (77% more), N-terminal acetylated peptides (56% more), and N-glycopeptides (83% more) as compared to DDA alone. Finally, the use of PASS-DIA to characterize a rare proteome of human fallopian tube organoids enabled 34% additional protein identifications than DDA alone and revealed biologically relevant pathways including low abundance proteins. Overall, PASS-DIA is a novel DIA approach for use as a discovery tool that outperforms both conventional DDA and DIA experiments to provide additional protein information. We believe that the PASS-DIA method is an important strategy for discovery-type studies when deeper proteome characterization is required.


Asunto(s)
Proteómica/métodos , Espectrometría de Masas en Tándem , Interpretación Estadística de Datos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA