Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35586449

RESUMEN

Background: Pulmonary hypertension (PH) in patients with chronic lung disease (CLD) predicts reduced functional status, clinical worsening and increased mortality, with patients with severe PH-CLD (≥35 mmHg) having a significantly worse prognosis than mild to moderate PH-CLD (21-34 mmHg). The aim of this cross-sectional study was to assess the association between computed tomography (CT)-derived quantitative pulmonary vessel volume, PH severity and disease aetiology in CLD. Methods: Treatment-naïve patients with CLD who underwent CT pulmonary angiography, lung function testing and right heart catheterisation were identified from the ASPIRE registry between October 2012 and July 2018. Quantitative assessments of total pulmonary vessel and small pulmonary vessel volume were performed. Results: 90 patients had PH-CLD including 44 associated with COPD/emphysema and 46 with interstitial lung disease (ILD). Patients with severe PH-CLD (n=40) had lower small pulmonary vessel volume compared to patients with mild to moderate PH-CLD (n=50). Patients with PH-ILD had significantly reduced small pulmonary blood vessel volume, compared to PH-COPD/emphysema. Higher mortality was identified in patients with lower small pulmonary vessel volume. Conclusion: Patients with severe PH-CLD, regardless of aetiology, have lower small pulmonary vessel volume compared to patients with mild-moderate PH-CLD, and this is associated with a higher mortality. Whether pulmonary vessel changes quantified by CT are a marker of remodelling of the distal pulmonary vasculature requires further study.

2.
J Cardiovasc Magn Reson ; 24(1): 25, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35387651

RESUMEN

BACKGROUND: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality.


Asunto(s)
Inteligencia Artificial , Hipertensión Pulmonar , Ventrículos Cardíacos , Humanos , Espectroscopía de Resonancia Magnética , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados
3.
Chronic Obstr Pulm Dis ; 9(2): 154-164, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35021316

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a known comorbidity for lung cancer independent of smoking history. Quantitative computed tomography (qCT) imaging features related to COPD have shown promise in the assessment of lung cancer risk. We hypothesize that qCT features from the lung, lobe, and airway tree related to the location of the pulmonary nodule can be used to provide informative malignancy risk assessment. METHODS: A total of 183 qCT features were extracted from 278 individuals with a solitary pulmonary nodule of known diagnosis (71 malignant, 207 benign). These included histogram and airway characteristics of the lungs, lobe, and segmental paths. Performances of the least absolute shrinkage and selection operator (LASSO) regression analysis and an ensemble of neural networks (ENN) were compared for feature set selection and classification on a testing cohort of 49 additional individuals (15 malignant, 34 benign). RESULTS: The LASSO and ENN methods produced different feature sets for classification with LASSO selecting fewer qCT features (7) than the ENN (17). The LASSO model with the highest performing training area under the curve (AUC) (0.80) incorporated automatically extracted features and reader-measured nodule diameter with a testing AUC of 0.62. The ENN model with the highest performing AUC (0.77) also incorporated qCT and reader diameter but maintained higher testing performance AUC (0.79). CONCLUSIONS: Automatically extracted qCT imaging features of the lung can be informative of the differentiation between individuals with malignant pulmonary nodules and those with benign pulmonary nodules, without requiring nodule segmentation and analysis.

4.
Eur Heart J Digit Health ; 3(2): 265-275, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36713008

RESUMEN

Aims: Pulmonary arterial hypertension (PAH) is a rare but serious disease associated with high mortality if left untreated. This study aims to assess the prognostic cardiac magnetic resonance (CMR) features in PAH using machine learning. Methods and results: Seven hundred and twenty-three consecutive treatment-naive PAH patients were identified from the ASPIRE registry; 516 were included in the training, and 207 in the validation cohort. A multilinear principal component analysis (MPCA)-based machine learning approach was used to extract mortality and survival features throughout the cardiac cycle. The features were overlaid on the original imaging using thresholding and clustering of high- and low-risk of mortality prediction values. The 1-year mortality rate in the validation cohort was 10%. Univariable Cox regression analysis of the combined short-axis and four-chamber MPCA-based predictions was statistically significant (hazard ratios: 2.1, 95% CI: 1.3, 3.4, c-index = 0.70, P = 0.002). The MPCA features improved the 1-year mortality prediction of REVEAL from c-index = 0.71 to 0.76 (P ≤ 0.001). Abnormalities in the end-systolic interventricular septum and end-diastolic left ventricle indicated the highest risk of mortality. Conclusion: The MPCA-based machine learning is an explainable time-resolved approach that allows visualization of prognostic cardiac features throughout the cardiac cycle at the population level, making this approach transparent and clinically interpretable. In addition, the added prognostic value over the REVEAL risk score and CMR volumetric measurements allows for a more accurate prediction of 1-year mortality risk in PAH.

5.
Diagnostics (Basel) ; 11(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918838

RESUMEN

Accurate phenotyping of patients with pulmonary hypertension (PH) is an integral part of informing disease classification, treatment, and prognosis. The impact of lung disease on PH outcomes and response to treatment remains a challenging area with limited progress. Imaging with computed tomography (CT) plays an important role in patients with suspected PH when assessing for parenchymal lung disease, however, current assessments are limited by their semi-qualitative nature. Quantitative chest-CT (QCT) allows numerical quantification of lung parenchymal disease beyond subjective visual assessment. This has facilitated advances in radiological assessment and clinical correlation of a range of lung diseases including emphysema, interstitial lung disease, and coronavirus disease 2019 (COVID-19). Artificial Intelligence approaches have the potential to facilitate rapid quantitative assessments. Benefits of cross-sectional imaging include ease and speed of scan acquisition, repeatability and the potential for novel insights beyond visual assessment alone. Potential clinical benefits include improved phenotyping and prediction of treatment response and survival. Artificial intelligence approaches also have the potential to aid more focused study of pulmonary arterial hypertension (PAH) therapies by identifying more homogeneous subgroups of patients with lung disease. This state-of-the-art review summarizes recent QCT developments and potential applications in patients with PH with a focus on lung disease.

6.
Eur Heart J Cardiovasc Imaging ; 22(2): 236-245, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31998956

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily, visualize and interpret key discriminative features associated with PAH. METHODS AND RESULTS: Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and right heart catheterization within 48 h, were identified from the ASPIRE registry. A tensor-based machine learning approach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic analysis (P < 0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with correspondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH. CONCLUSION: A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Cateterismo Cardíaco , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Aprendizaje Automático , Espectroscopía de Resonancia Magnética
7.
Sci Rep ; 10(1): 5046, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193437

RESUMEN

Neurofibromatosis type 1 (NF1) is a rare, autosomal dominant disease with variable clinical presentations. Large animal models are useful to help dissect molecular mechanisms, determine relevant biomarkers, and develop effective therapeutics. Here, we studied a NF1 minipig model (NF1+/ex42del) for the first 12 months of life to evaluate phenotype development, track disease progression, and provide a comparison to human subjects. Through systematic evaluation, we have shown that compared to littermate controls, the NF1 model develops phenotypic characteristics of human NF1: [1] café-au-lait macules, [2] axillary/inguinal freckling, [3] shortened stature, [4] tibial bone curvature, and [5] neurofibroma. At 4 months, full body computed tomography imaging detected significantly smaller long bones in NF1+/ex42del minipigs compared to controls, indicative of shorter stature. We found quantitative evidence of tibial bowing in a subpopulation of NF1 minipigs. By 8 months, an NF1+/ex42del boar developed a large diffuse shoulder neurofibroma, visualized on magnetic resonance imaging, which subsequently grew in size and depth as the animal aged up to 20 months. The NF1+/ex42del minipig model progressively demonstrates signature attributes that parallel clinical manifestations seen in humans and provides a viable tool for future translational NF1 research.


Asunto(s)
Modelos Animales de Enfermedad , Neurofibromatosis 1/diagnóstico por imagen , Neurofibromatosis 1/patología , Fenotipo , Animales , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Neurofibroma/diagnóstico por imagen , Neurofibroma/patología , Porcinos , Porcinos Enanos , Tibia/diagnóstico por imagen , Tibia/patología , Factores de Tiempo , Tomografía Computarizada por Rayos X , Investigación Biomédica Traslacional
8.
Med Phys ; 46(7): 3207-3216, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31087332

RESUMEN

PURPOSE: Computed tomography (CT) is an effective method for detecting and characterizing lung nodules in vivo. With the growing use of chest CT, the detection frequency of lung nodules is increasing. Noninvasive methods to distinguish malignant from benign nodules have the potential to decrease the clinical burden, risk, and cost involved in follow-up procedures on the large number of false-positive lesions detected. This study examined the benefit of including perinodular parenchymal features in machine learning (ML) tools for pulmonary nodule assessment. METHODS: Lung nodule cases with pathology confirmed diagnosis (74 malignant, 289 benign) were used to extract quantitative imaging characteristics from computed tomography scans of the nodule and perinodular parenchyma tissue. A ML tool development pipeline was employed using k-medoids clustering and information theory to determine efficient predictor sets for different amounts of parenchyma inclusion and build an artificial neural network classifier. The resulting ML tool was validated using an independent cohort (50 malignant, 50 benign). RESULTS: The inclusion of parenchymal imaging features improved the performance of the ML tool over exclusively nodular features (P < 0.01). The best performing ML tool included features derived from nodule diameter-based surrounding parenchyma tissue quartile bands. We demonstrate similar high-performance values on the independent validation cohort (AUC-ROC = 0.965). A comparison using the independent validation cohort with the Fleischner pulmonary nodule follow-up guidelines demonstrated a theoretical reduction in recommended follow-up imaging and procedures. CONCLUSIONS: Radiomic features extracted from the parenchyma surrounding lung nodules contain valid signals with spatial relevance for the task of lung cancer risk classification. Through standardization of feature extraction regions from the parenchyma, ML tool validation performance of 100% sensitivity and 96% specificity was achieved.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/provisión & distribución , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Aprendizaje Automático , Tomografía Computarizada por Rayos X , Adulto , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estándares de Referencia
9.
Eur Radiol ; 29(10): 5367-5377, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30937590

RESUMEN

OBJECTIVES: Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. MATERIALS AND METHODS: A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. RESULTS: Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. CONCLUSIONS: Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. KEY POINTS: • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Modelos Teóricos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico por imagen , Lesiones Precancerosas/patología , Nódulo Pulmonar Solitario/patología , Tomografía Computarizada por Rayos X/métodos
10.
Transl Lung Cancer Res ; 8(6): 979-988, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32010576

RESUMEN

BACKGROUND: Histoplasmosis pulmonary nodules often present in computed tomography (CT) imaging with characteristics suspicious for lung cancer. This presents a work-up decision issue for clinicians in regions where histoplasmosis is an endemic fungal infection, when a nodule suspicious for lung cancer is detected. We hypothesize the application of radiomic features extracted from pulmonary nodules and perinodular parenchyma could accurately distinguish between suspicious histoplasmosis lung nodules and non-small cell lung cancer (NSCLC). METHODS: A retrospective clinical cohort of pulmonary nodules with a confirmed diagnosis of histoplasmosis or NSCLC was collected from the University of Iowa Hospitals and Clincs. Radiomic features were extracted describing characteristics of the nodule and perinodular parenchyma regions and used to build a machine learning tool. These cases were assessed by four expert clinicians who gave a blinded risk prediction for NSCLC. Tool and observer performance were assessed by calculating the area under the curve for the receiver operating characteristic (AUC-ROC) and interclass correlation coefficient (ICC). RESULTS: A cohort of 71 subjects with confirmed histopathology (40 NSCLC, 31 histoplasmosis) were case-matched based on age, sex, and smoking history. Superior performance (AUC-ROC =0.89) was demonstrated using leave-one-subject out validation in the tool that incorporated radiomics from the nodule and perinodular parenchyma region extended to 100% nodule diameter. Observers had perfect intra-repeatability (ICC =1.0) and demonstrated fair inter-reader variability (ICC =0.52). CONCLUSIONS: Radiomics have potential utility in the challenging task of differentiation between lung cancer and histoplasmosis. Expert clinician readers have high intra-repeatability but demonstrated inter-reader variability which could provide context for a supplemental radiomics-based tool.

11.
JCI Insight ; 3(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29925695

RESUMEN

Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.


Asunto(s)
Modelos Animales de Enfermedad , Neurofibromatosis 1 , Neurofibromina 1/metabolismo , Porcinos , Animales , Manchas Café con Leche , Exones/genética , Fibroblastos/metabolismo , Proteínas Activadoras de GTPasa/genética , Ganglios Espinales/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Canales Iónicos , Aprendizaje , Masculino , Memoria , Mutación , Neurofibroma , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/fisiología , Transducción de Señal
12.
Tomography ; 2(4): 430-437, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28149958

RESUMEN

Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic "feature" sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≥0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy.

13.
J Med Imaging (Bellingham) ; 2(4): 041004, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26870744

RESUMEN

Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA