RESUMEN
The expression of heat shock proteins is considered a central adaptive mechanism to heat stress. This study investigated the expression of heat shock proteins (HSPs) and other stress-protective proteins against heat stress in cowpea genotypes under field (IT-96D-610 and IT-16) and controlled (IT-96D-610) conditions. Heat stress response analysis of proteins at 72 h in the controlled environment showed 270 differentially regulated proteins identified using label-free quantitative proteomics in IT-96D-610 plants. These plants expressed HSPs and chaperones [BAG family molecular chaperone 6 (BAG6), Multiprotein bridging factor1c (MBF1C) and cold shock domain protein 1 (CSDP1) in the controlled environment]. However, IT-96D-610 plants expressed a wider variety of small HSPs and more HSPs in the field. IT-96D-610 plants also responded to heat stress by exclusively expressing chaperones [DnaJ chaperones, universal stress protein and heat shock binding protein (HSBP)] and non-HSP proteins (Deg1, EGY3, ROS protective proteins, temperature-induced lipocalin and succinic dehydrogenase). Photosynthesis recovery and induction of proteins related to photosynthesis were better in IT-96D-610 because of the concurrent induction of heat stress response proteins for chaperone functions, protein degradation for repair and ROS scavenging proteins and PSII operating efficiency (Fq'/Fm') than IT-16. This study contributes to identification of thermotolerance mechanisms in cowpea that can be useful in knowledge-based crop improvement.
RESUMEN
Interrogative proteome analyses are used to identify and quantify the expression of proteins involved in heat tolerance and to identify associated physiological processes in heat-stressed plants. The objectives of the study were to identify and quantify the expression of proteins involved in heat tolerance and to identify associated physiological processes in chickpea (Cicer arietinum L.) heat-tolerant (Acc#7) and sensitive genotype (Acc#8) from a field study. Proteomic and gene ontological analyses showed an upregulation in proteins related to protein synthesis, intracellular traffic, defence and transport in the heat-tolerant genotype compared to the susceptible one at the warmer site. Results from KEGG analyses indicate the involvement of probable sucrose-phosphate synthase (EC 2.4.1.14) and sucrose-phosphate phosphatase (EC 3.1.3.24) proteins, that were upregulated in the heat-tolerant genotype at the warmer site, in the starch and sucrose pathway. The presence of these differentially regulated proteins including HSP70, ribulose bisphosphate carboxylase/oxygenase activase, plastocyanin and protoporphyrinogen oxidase suggests their potential role in heat tolerance, at flowering growth stage, in field-grown chickpea. This observation supports unaltered physiological and biochemical performance of the heat-tolerant genotypes (Acc#7) relative to the susceptible genotype (Acc#8) in related studies (Makonya et al. 2019). Characterisation of the candidate proteins identified in the current study as well as their specific roles in the tolerance to heat stress in chickpea are integral to further crop improvement initiatives.
Asunto(s)
Cicer , Cicer/genética , Respuesta al Choque Térmico/genética , Proteoma , Proteómica , Estrés FisiológicoRESUMEN
Vachellia sieberiana fixes atmospheric nitrogen (N) and distributes it back into ecosystems. We hypothesize that biological nitrogen fixation in this plant species is limited by competition from the invasive shrub, Chromolaena odorata. Competition would therefore result in the legume plant switching its limited nitrogen (N) sources in phosphorus-poor soils in savannah ecosystems when resources have to be shared. This study investigated the different patterns of N use and growth costs by a native and an introduced leguminous shrubby species. We propose that the two species sharing the same environment might result in competition. The competitive effect would induce in the indigenous legume to better utilize atmospheric-derived N modifying plant growth kinetics and plant mineral concentrations. Seedlings of V. sieberiana were cultivated in natural soil inoculum with low levels of phosphorus (mg L-1 ± SE) of 3.67 ± 0.88. The experiments were divided into two treatments where (i) seedlings of V. sieberiana were subjected to competition by cultivating them together with seedlings of C. odorata, and (ii) seedlings of V. sieberiana were cultivated independently. Although V. sieberiana was subjected to competition, the N2-fixing bacteria that occupied the nodules was Mesorhizobium species, similar to plants not subjected to competition. Total plant biomass was similar between treatments although V. sieberiana plants subjected to competition accumulated more below-ground biomass and showed higher carbon construction costs than plants growing individually. Total plant phosphorus and nitrogen decreased in seedlings of V. sieberiana under competition, whereas no differences were observed in percent N derived from the atmosphere (%NDFA) between treatments. The specific nitrogen utilization rate (SNUR) was higher in V. sieberiana plants subjected to competition while specific nitrogen absorption rate (SNAR) showed the opposite response. Vachellia sieberiana is highly adapted to nutrient-poor savannah ecosystems and can withstand competition from invasive shrubs by utilizing both atmospheric and soil nitrogen sources.
RESUMEN
Chickpea (Cicer arietinum L.), a cool season crop is severely affected by heat stress, predicted to increase due to warming climates. Research for identifying heat tolerance markers for potential chickpea genotype selection is imperative. The study assessed the response of four chickpea genotypes to a natural temperature gradient in the field using chlorophyll fluorescence, non-structural carbohydrate, chlorophyll concentrations, gas exchange and grain yield. Field experiments were carried out in two winter seasons at three locations with known differences in temperature in NE South Africa. Results showed two genotypes were tolerant to heat stress with an Fv/Fm of 0.83-0.85â¯at the warmer site, while the two sensitive genotypes showed lower Fv/Fm of 0.78-0.80. Both dark-adapted Fv/Fm and Fq'/Fm' (where Fq'â¯=â¯Fm' -F) measured at comparable high light levels correlated positively with grain yield. The two tolerant genotypes also showed higher photosynthetic rates, starch, sucrose and grain yield than the sensitive genotypes at the warmer site. However, these parameters were consistently higher at the cooler sites than at the warmer. These results were further validated by a climate chamber experiment, where higher Fv/Fm decline in the sensitive compared to tolerant genotypes was observed when they were exposed to short-term heat treatments of 30/25⯰C and 35/30⯰C. Tolerant genotypes had higher Fv/Fm (0.78-0.81) and grain yield plant-1(1.12-2.37g) compared to sensitive genotypes (0.74-0.75) and (0.32-0.89g plant-1) respectively in the 35/30⯰C. It is concluded that chlorophyll fluorescence and leaf carbohydrates are suitable tools for selection of heat tolerant chickpea genotypes under field conditions, while the coolest site showed favourable conditions for chickpea production.
Asunto(s)
Carbohidratos/química , Clorofila/química , Cicer/genética , Producción de Cultivos/métodos , Fluorescencia , Genotipo , Aclimatación , África del Sur del Sahara , Metabolismo de los Hidratos de Carbono , Cicer/química , Genes de Plantas , Calor , Fenotipo , Fotosíntesis , Complejo de Proteína del Fotosistema II/química , Hojas de la Planta/químicaRESUMEN
Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.
RESUMEN
Legumes play a significant role in natural and agricultural ecosystems. They can fix atmospheric N2 and contribute the fixed N to soils and plant N budgets. In legumes, the availability of P does not only affect nodule development, but also N acquisition and metabolism. For legumes as an important source of plant proteins, their capacity to metabolise N during P deficiency is critical for their benefits to agriculture and the natural environment. In particular for farming, rock P is a non-renewable source of which the world has about 60-80 years of sustainable extraction of this P left. The global production of legume crops would be devastated during a scarcity of P fertiliser. Legume nodules have a high requirement for mineral P, which makes them vulnerable to soil P deficiencies. In order to maintain N metabolism, the nodules have evolved several strategies to resist the immediate effects of P limitation and to respond to prolonged P deficiency. In legumes nodules, N metabolism is determined by several processes involving the acquisition, assimilation, export, and recycling of N in various forms. Although these processes are integrated, the current literature lacks a clear synthesis of how legumes respond to P stress regarding its impact on N metabolism. In this review, we synthesise the current state of knowledge on how legumes maintain N metabolism during P deficiency. Moreover, we discuss the potential importance of two additional alterations to N metabolism during P deficiency. Our goals are to place these newly proposed mechanisms in perspective with other known adaptations of N metabolism to P deficiency and to discuss their practical benefits during P deficiency in legumes.
Asunto(s)
Adaptación Fisiológica , Fabaceae/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Fijación del Nitrógeno , Fosfatos/deficiencia , Fósforo/deficiencia , Nodulación de la Raíz de la Planta , RhizobiumRESUMEN
Podalyria calyptrata is from fynbos soils with low availability of phosphorus (P) and nitrogen (N). We investigated the physiological basis for tolerance of low P supply in nodulated P. calyptrata and examined responses to increased supply of combined-N as Ca(NO3)2 and P. It was hypothesized that increasing supply of combined-N would stimulate P-acquisition mechanisms and enhance plant growth with high P supply. Biomass, leaf [N] and [P], organic acid and phosphatase root exudates, and phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity in nodules and roots were examined in two N×P experiments. Low P supply decreased leaf [P] and limited growth, decreasing the nodule:root ratio but increasing nodular PEPC and MDH activity for enhanced P-acquisition or P-utilization. At low P supply, a N-induced demand for P increased root exudation of citrate and PEPC and MDH activity in roots. Greater combined-N supply inhibited nodulation more at low P supply than at high P supply. With a P-induced demand for N the plants nodulated prolifically and increased combined-N supply did not enhance plant growth. The physiological basis for N2-fixing P. calyptrata tolerating growth at low P supply and responding to greater P supply is through balanced acquisition of P and N for plant demand.
Asunto(s)
Biomasa , Ácidos Carboxílicos/metabolismo , Fabaceae/metabolismo , Nitrógeno/farmacología , Fósforo/farmacología , Suelo , Espacio Extracelular/enzimología , Nitratos/farmacología , Fosfoproteínas Fosfatasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , SolucionesRESUMEN
Legumes have the unique ability to fix atmospheric nitrogen (N2) via symbiotic bacteria in their nodules but depend heavily on phosphorus (P), which affects nodulation, and the carbon costs and energy costs of N2 fixation. Consequently, legumes growing in nutrient-poor ecosystems (e.g., sandstone-derived soils) have to enhance P recycling and/or acquisition in order to maintain N2 fixation. In this study, we investigated the flexibility of P recycling and distribution within the nodules and their effect on N nutrition in Virgilia divaricata Adamson, Fabaceae, an indigenous legume in the Cape Floristic Region of South Africa. Specifically, we assessed tissue elemental localization using micro-particle-induced X-ray emission (PIXE), measured N fixation using nutrient concentrations derived from inductively coupled mass-spectrometry (ICP-MS), calculated nutrient costs, and determined P recycling from enzyme activity assays. Morphological and physiological features characteristic of adaptation to P deprivation were observed for V. divaricata. Decreased plant growth and nodule production with parallel increased root:shoot ratios are some of the plastic features exhibited in response to P deficiency. Plants resupplied with P resembled those supplied with optimal P levels in terms of growth and nutrient acquisition. Under low P conditions, plants maintained an increase in N2-fixing efficiency despite lower levels of orthophosphate (Pi) in the nodules. This can be attributed to two factors: (i) an increase in Fe concentration under low P, and (ii) greater APase activity in both the roots and nodules under low P. These findings suggest that V. divaricata is well adapted to acquire N under P deficiency, owing to the plasticity of its nodule physiology.
Asunto(s)
Fabaceae/fisiología , Fósforo/metabolismo , Biomasa , Fabaceae/metabolismo , Fijación del NitrógenoRESUMEN
We investigated the physiological basis for tolerance of limiting P supply and for enhanced growth with simultaneous addition of N and P in Aspalathus linearis (Burm. f.) R. Dahlgren. It was hypothesised that increasing N supply would stimulate P acquisition mechanisms and enhance plant growth with high P supply. In sand, plants received 100µM, 300µM, 500µM and 700µM N at a low P level of 10µM and a high P level of 100µM. In solution, plants received 200µM and 500µM N at a low P level of 5µM and a high P level of 15µM. Cluster roots formed only in plants with low P supply. Roots showed greater citrate and malate production and phosphatase activity at 5µM P than at 15µM P. At 10µM P, greater N supply enhanced cluster root formation to 60% of root biomass, and increased the phosphatase activity of noncluster roots and succinate release by both root types. At a high P supply of 15µM, greater N supply stimulated phosphatase activity of roots by 50%, increasing P uptake and plant growth. With increased resource partitioning towards P acquisition due to greater P demand, A. linearis is tolerant of low P supply and highly responsive to combined addition of N and P.
RESUMEN
The synergistic benefits of the dual inoculation of legumes with nodule bacteria and arbuscular mycorrhizae (AM) are well established, but the effect of an external NH(4)(+) supply on this tripartite relationship is less clear. This effect of NH(4)(+) supply was investigated with regards to the growth and function of the legume host and both symbionts. Nodulated Phaseolus vulgaris seedlings with and without AM, were grown in a sand medium with either 0 N, 1 mM or 3 mM NH(4)(+). Plants were harvested at 30 days after emergence and measurements were taken for biomass, N(2) fixation, photosynthesis, asparagine concentration, construction costs and N nutrition. The addition of NH(4)(+) led to a decline in the percentage AM colonization and nodule dry weights, although AM colonization was affected to a lesser extent. NH(4)(+) supply also resulted in a decrease in the reliance on biological nitrogen fixation (BNF); however, the AM roots maintained higher levels of NH(4)(+) uptake than their non-AM counterparts. Furthermore, the non-AM plants had a higher production of asparagine than the AM plants. The inhibitory effects of NH(4)(+) on nodule function can be reduced by the presence of AM at moderate levels of NH(4)(+) (1 mM), via improving nodule growth or relieving the asparagine-induced inhibition of BNF.