Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268369

RESUMEN

T lymphocyte activation requires the formation of immune synapses (IS) with antigen-presenting cells. The dynamics of membrane receptors, signaling scaffolds, microfilaments, and microtubules at the IS determine the potency of T cell activation and subsequent immune response. Here, we show that the cytosolic chaperonin CCT (chaperonin-containing TCP1) controls the changes in reciprocal orientation of the centrioles and polarization of the tubulin dynamics induced by T cell receptor in T lymphocytes forming an IS. CCT also controls the mitochondrial ultrastructure and the metabolic status of T cells, regulating the de novo synthesis of tubulin as well as posttranslational modifications (poly-glutamylation, acetylation, Δ1 and Δ2) of αß-tubulin heterodimers, fine-tuning tubulin dynamics. These changes ultimately determine the function and organization of the centrioles, as shown by three-dimensional reconstruction of resting and stimulated primary T cells using cryo-soft x-ray tomography. Through this mechanism, CCT governs T cell activation and polarity.


Asunto(s)
Chaperonina con TCP-1 , Tubulina (Proteína) , Centriolos/metabolismo , Chaperonina con TCP-1/metabolismo , Microtúbulos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Tubulina (Proteína)/química
2.
Science ; 294(5542): 543-7, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11641489

RESUMEN

The mitotic spindle is a highly dynamic molecular machine composed of tubulin, motors, and other molecules. It assembles around the chromosomes and distributes the duplicated genome to the daughter cells during mitosis. The biochemical and physical principles that govern the assembly of this machine are still unclear. However, accumulated discoveries indicate that chromosomes play a key role. Apparently, they generate a local cytoplasmic state that supports the nucleation and growth of microtubules. Then soluble and chromosome-associated molecular motors sort them into a bipolar array. The emerging picture is that spindle assembly is governed by a combination of modular principles and that their relative contribution may vary in different cell types and in various organisms.


Asunto(s)
Cromosomas/fisiología , Microtúbulos/fisiología , Huso Acromático/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , Centrosoma/fisiología , Centrosoma/ultraestructura , Cromosomas/ultraestructura , Citoplasma/fisiología , Guanosina Trifosfato/metabolismo , Interfase , Microtúbulos/ultraestructura , Mitosis , Proteínas Motoras Moleculares/fisiología , Huso Acromático/ultraestructura , Xenopus , Proteína de Unión al GTP ran/metabolismo
3.
EMBO Rep ; 2(8): 669-73, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11493594

RESUMEN

Spindle assembly and chromosome segregation require the concerted activities of a variety of microtubule-dependent motors. This review focuses on our current knowledge of the roles played by the chromosome-associated motors during mitosis. While some appear to function conventionally in moving chromosomes along microtubules others seem to act in different ways. For example, by docking microtubules to chromosome arms, chromatin-associated motors prevent chromosome loss and participate in spindle formation and stability. Kinetochore motors participate in the formation of stable kinetochore fibers or in the control of microtubule dynamics and are involved in spindle checkpoint activity. Chromosome-associated motors thus appear to be key molecules that function in complementary ways to ensure the accuracy of chromosome segregation.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas/metabolismo , Cinetocoros/metabolismo , Proteínas Motoras Moleculares/metabolismo , Huso Acromático/metabolismo , Animales , Dineínas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Modelos Biológicos
4.
EMBO J ; 20(13): 3370-9, 2001 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-11432825

RESUMEN

kinesin-II motor proteins are composed of two different kinesin-like motor proteins and one cargo binding subunit. Here we report the cloning of a new member of the kinesin-II superfamily, Xklp3A from Xenopus laevis, which forms a heterodimeric complex with Xklp3B. The heterodimer formation properties between Xklp3A and B have been tested in vitro using reticulocyte lysate expression and immunoprecipitation. To this end we produced a series of Xklp3A and B constructs of varying length and tested their propensity for heterodimer formation. We could demonstrate that, in contrast to conventional kinesin, the critical domains for heterodimer formation in Xklp3A/B are located at the C-terminal end of the stalk. Neither the neck nor the highly charged stretches after the neck region, which are typical of kinesins-II, are required for heterodimer formation, nor do they prevent homodimer formation. Dimerization is controlled by a cooperative mechanism between the C-terminal coiled-coil segments. Classical trigger sites were not identified. The critical regions for dimerization exhibit a very high degree of sequence conservation among equivalent members of the kinesin-II family.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Clonación Molecular , Secuencia Conservada , Dimerización , Cinesinas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Secuencias Repetitivas de Aminoácido , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de Xenopus , Xenopus laevis
5.
Cell ; 104(1): 83-93, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11163242

RESUMEN

The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin alpha, and is displaced from importin alpha by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin alpha. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas de Neoplasias , Proteínas Nucleares/metabolismo , Fosfoproteínas , Huso Acromático/metabolismo , Proteínas de Xenopus , Proteína de Unión al GTP ran/metabolismo , Animales , Cromatina/metabolismo , Clonación Molecular , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/aislamiento & purificación , GTP Fosfohidrolasas/metabolismo , Expresión Génica/fisiología , Células HeLa , Humanos , Carioferinas , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Xenopus laevis , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/aislamiento & purificación
8.
FEBS Lett ; 486(3): 285-90, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11119720

RESUMEN

By sequence analysis we show that the U104 domain found in the UNC104 subfamily of kinesins is a forkhead homology-associated domain (FHA). A combination of limited proteolysis, mass spectroscopy, and physicochemical analysis define this domain as a genuine autonomously folding domain. Our data show that the FHA domain is shorter than previously reported since the C-terminal alpha-helix is not part of its minimum core. Key amino acids postulated to recognize phosphorylated residues are conserved. These data suggest that the kinesin FHA domains are functional domains involved in protein-protein interactions regulated by phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular , Cinesinas/química , Cinesinas/genética , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Quinasa de Punto de Control 2 , Dicroismo Circular , Bases de Datos Factuales , Factores de Transcripción Forkhead , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fragmentos de Péptidos/química , Fosforilación , Unión Proteica/genética , Desnaturalización Proteica , Pliegue de Proteína , Proteínas Quinasas/genética , Estructura Terciaria de Proteína/genética , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Termodinámica , Factores de Transcripción/genética , Urea/química , Xenopus
9.
Cell ; 102(4): 425-35, 2000 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-10966105

RESUMEN

Metaphase chromosome alignment is a key step of animal cell mitosis. The molecular mechanism leading to this equatorial positioning is still not fully understood. Forces exerted at kinetochores and on chromosome arms drive chromosome movements that culminate in their alignment on the metaphase plate. In this paper, we show that Xkid, a kinesin-like protein localized on chromosome arms, plays an essential role in metaphase chromosome alignment and in its maintenance. We propose that Xkid is responsible for the polar ejection forces acting on chromosome arms. Our results show that these forces are essential to ensure that kinetochores and chromosome arms align on a narrow equatorial plate during metaphase, a prerequisite for proper chromosome segregation.


Asunto(s)
Cromosomas/fisiología , Proteínas de Unión al ADN/fisiología , Cinesinas/fisiología , Metafase/genética , Proteínas de Xenopus , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas de Unión al ADN/genética , Cinesinas/genética , Microscopía por Video , Proteínas de Microtúbulos/metabolismo , Datos de Secuencia Molecular , Xenopus
10.
J Cell Biol ; 149(7): 1405-18, 2000 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-10871281

RESUMEN

TPX2, the targeting protein for Xenopus kinesin-like protein 2 (Xklp2), was identified as a microtubule-associated protein that mediates the binding of the COOH-terminal domain of Xklp2 to microtubules (Wittmann, T., H. Boleti, C. Antony, E. Karsenti, and I. Vernos. 1998. J. Cell Biol. 143:673-685). Here, we report the cloning and functional characterization of Xenopus TPX2. TPX2 is a novel, basic 82.4-kD protein that is phosphorylated during mitosis in a microtubule-dependent way. TPX2 is nuclear during interphase and becomes localized to spindle poles in mitosis. Spindle pole localization of TPX2 requires the activity of the dynein-dynactin complex. In late anaphase TPX2 becomes relocalized from the spindle poles to the midbody. TPX2 is highly homologous to a human protein of unknown function and thus defines a new family of vertebrate spindle pole components. We investigated the function of TPX2 using spindle assembly in Xenopus egg extracts. Immunodepletion of TPX2 from mitotic egg extracts resulted in bipolar structures with disintegrating poles and a decreased microtubule density. Addition of an excess of TPX2 to spindle assembly reactions gave rise to monopolar structures with abnormally enlarged poles. We conclude that, in addition to its function in targeting Xklp2 to microtubule minus ends during mitosis, TPX2 also participates in the organization of spindle poles.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias , Proteínas Nucleares , Fosfoproteínas , Huso Acromático/genética , Huso Acromático/metabolismo , Proteínas de Xenopus , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Complejo Dinactina , Dineínas/genética , Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Datos de Secuencia Molecular , Óvulo , Huso Acromático/ultraestructura , Xenopus
11.
J Cell Biol ; 143(6): 1547-58, 1998 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-9852150

RESUMEN

Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720-3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Cinesinas/fisiología , Melanóforos/fisiología , Melanosomas/fisiología , Proteínas Musculares/fisiología , Pigmentos Biológicos/metabolismo , Animales , Anticuerpos/farmacología , Proteínas de Unión al Calcio/química , Agregación Celular , Electroporación , Proteínas Fluorescentes Verdes , Cinesinas/química , Proteínas Luminiscentes/metabolismo , Lisosomas/fisiología , Lisosomas/ultraestructura , Sustancias Macromoleculares , Melanóforos/ultraestructura , Melanosomas/ultraestructura , Microscopía por Video , Movimiento , Proteínas Musculares/química , Pinocitosis , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Xenopus , Proteínas de Xenopus
12.
J Cell Biol ; 143(6): 1559-73, 1998 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-9852151

RESUMEN

The function of the Golgi apparatus is to modify proteins and lipids synthesized in the ER and sort them to their final destination. The steady-state size and function of the Golgi apparatus is maintained through the recycling of some components back to the ER. Several lines of evidence indicate that the spatial segregation between the ER and the Golgi apparatus as well as trafficking between these two compartments require both microtubules and motors. We have cloned and characterized a new Xenopus kinesin like protein, Xklp3, a subunit of the heterotrimeric Kinesin II. By immunofluorescence it is found in the Golgi region. A more detailed analysis by EM shows that it is associated with a subset of membranes that contain the KDEL receptor and are localized between the ER and Golgi apparatus. An association of Xklp3 with the recycling compartment is further supported by a biochemical analysis and the behavior of Xklp3 in BFA-treated cells. The function of Xklp3 was analyzed by transfecting cells with a dominant-negative form lacking the motor domain. In these cells, the normal delivery of newly synthesized proteins to the Golgi apparatus is blocked. Taken together, these results indicate that Xklp3 is involved in the transport of tubular-vesicular elements between the ER and the Golgi apparatus.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Cinesinas/fisiología , Proteínas Musculares/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Línea Celular , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Oocitos/fisiología , Reacción en Cadena de la Polimerasa , Receptores de Péptidos/química , Receptores de Péptidos/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Xenopus , Proteínas de Xenopus
13.
J Cell Biol ; 143(3): 673-85, 1998 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-9813089

RESUMEN

Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Leucina Zippers , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático , Proteínas de Xenopus , Animales , Sitios de Unión , Ciclo Celular , Extractos Celulares , Dimerización , Complejo Dinactina , Humanos , Microtúbulos/metabolismo , Oocitos/metabolismo , Conejos , Proteínas Recombinantes de Fusión/metabolismo , Xenopus
14.
Curr Biol ; 8(16): 903-13, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9707401

RESUMEN

BACKGROUND: In eukaryotes, assembly of the mitotic spindle requires the interaction of chromosomes with microtubules. During this process, several motor proteins that move along microtubules promote formation of a bipolar microtubule array, but the precise mechanism is unclear. In order to examine the roles of different motor proteins in building a bipolar spindle, we have used a simplified system in which spindles assemble around beads coated with plasmid DNA and incubated in extracts from Xenopus eggs. Using this system, we can study spindle assembly in the absence of paired cues, such as centrosomes and kinetochores, whose microtubule-organizing properties might mask the action of motor proteins. RESULTS: We blocked the function of individual motor proteins in the Xenopus extracts using specific antibodies. Inhibition of Xenopus kinesin-like protein 1 (Xklp1) led either to the dissociation of chromatin beads from microtubule arrays, or to collapsed microtubule bundles on beads. Inhibition of Eg5 resulted in monopolar microtubule arrays emanating from chromatin beads. Addition of antibodies against dynein inhibited the focusing of microtubule ends into spindle poles in a dose-dependent manner. Inhibition of Xenopus carboxy-terminal kinesin 2 (XCTK2) affected both pole formation and spindle stability. Co-inhibition of XCTK2 and dynein dramatically increased the severity of spindle pole defects. Inhibition of Xklp2 caused only minor spindle pole defects. CONCLUSIONS: Multiple microtubule-based motor activities are required for the bipolar organization of microtubules around chromatin beads, and we propose a model for the roles of the individual motor proteins in this process.


Asunto(s)
Cromatina/fisiología , Cinesinas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Modelos Biológicos , Oocitos/fisiología , Huso Acromático/fisiología , Proteínas de Xenopus , Animales , Polaridad Celular , Cromatina/ultraestructura , Femenino , Meiosis , Metafase , Microtúbulos/ultraestructura , Oocitos/citología , Oocitos/ultraestructura , Huso Acromático/ultraestructura , Extractos de Tejidos , Xenopus laevis
15.
Curr Opin Cell Biol ; 8(1): 4-9, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8791405

RESUMEN

During the past two years, major advances have been made in our understanding of the role of motor proteins in chromosome-microtubule interactions in the spindle. The discovery of kinesin-like proteins (KLPs) associated with chromosome arms has shed some light on the mechanism of chromosome congression and the establishment of spindle bipolarity. Recent results also indicate that kinetochore KLPs may tether the ends of growing and shrinking microtubules to kinetochores during chromosome movements. Finally, new data indicate that phosphorylation of KLPs may be one of the mechanisms by which they are targeted to specific spindle domains.


Asunto(s)
Cromosomas/fisiología , Proteínas de Unión al ADN/fisiología , Cinesinas/fisiología , Huso Acromático/fisiología
16.
Cell ; 84(1): 49-59, 1996 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-8548825

RESUMEN

We describe a novel Xenopus plus end-directed kinesin-like protein (KLP), Xklp2, localized on centrosomes throughout the cell cycle and on spindle pole microtubules during metaphase. Using mitotic spindles assembled in Xenopus egg extracts and different recombinant GST-Xklp2 mutants, we show that this motor is targeted to spindle poles through its C-terminal domain. Xklp2-truncated polypeptides lacking the motor domain block centrosome separation and disrupt preassembled metaphase spindles. Antibodies directed against the tail of Xklp2 have a similar effect. These results show that Xklp2 protein is required for centrosome separation and maintenance of spindle bipolarity. This study is an example of the application of the dominant negative mutant effect on spindle assembly in Xenopus egg extracts, demonstrating the usefulness of this approach in probing the function of proteins in this system.


Asunto(s)
Proteínas de Ciclo Celular/aislamiento & purificación , Centrosoma/fisiología , Cinesinas/aislamiento & purificación , Cinesinas/metabolismo , Mitosis/fisiología , Proteínas de Xenopus , Xenopus laevis/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Extractos Celulares , Clonación Molecular , ADN Complementario/análisis , Cinesinas/análisis , Cinesinas/genética , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Óvulo/química , Óvulo/fisiología , Huso Acromático/fisiología
17.
Trends Cell Biol ; 5(8): 297-301, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14732087

RESUMEN

Several kinesin-like motor proteins have recently been found associated with chromosome arms. They seem to be involved in the so-called 'polar ejection forces' that contribute to the congression of chromosomes on the metaphase plate, and at least one of them is essential for the maintenance of spindle bipolarity. The discovery of these molecules changes our view of the mechanism of spindle assembly and chromosome movement.

18.
Cell ; 81(1): 117-27, 1995 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-7720067

RESUMEN

Xklp1 is a novel Xenopus kinesin-like protein with a motor domain at the amino terminus, nuclear localization sequences in the stalk, and a putative zinc finger-like sequence in the tail. It is nuclear during interphase and chromosomal during mitosis. During late anaphase, a fraction of the protein relocalizes to the spindle interzone and accumulates in the midbody during telophase. Depletion of Xklp1 protein by antisense oligo knockout in oocytes leads to defective mitosis during the first cell cycles following fertilization. The bipolarity of spindles assembled in vitro in the presence of anti-Xklp1 antibodies is unstable, and the chromosomes fail to congress on the metaphase plate.


Asunto(s)
Cromosomas/química , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Huso Acromático/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN sin Sentido , Embrión no Mamífero , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Datos de Secuencia Molecular , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Oocitos/química , Oocitos/fisiología , Especificidad de Órganos , ARN Mensajero , Proteínas Recombinantes de Fusión/análisis , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Xenopus laevis
19.
Biochem Biophys Res Commun ; 194(2): 647-53, 1993 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-8343152

RESUMEN

The Ultrabithorax gene is required to specify the third thoracic and first abdominal segments of Drosophila melanogaster. Mutations in the bithoraxoid region, a 40 kb DNA stretch upstream of the Ultrabithorax promoter, affect cis-regulatory elements of the Ultrabithorax gene. We now have identified specific sites in the bithoraxoid region that exhibit S1 nuclease sensitivity in vitro. These sites are not scattered along the DNA but are grouped instead in specific domains. Some of these S1-sensitive sites correlate with known breakpoint or insertional mutations. Others correspond to putative binding sites for transcription factors. The results suggest that unusual secondary structure might be important in chromosomal translocation within regulatory sequences of the Ultrabithorax product or its transcriptional regulation.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Homeodominio , Animales , Secuencia de Bases , Sitios de Unión , ADN/genética , Mutagénesis Insercional , Plásmidos , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , Endonucleasas Específicas del ADN y ARN con un Solo Filamento , TATA Box , Factores de Transcripción/metabolismo
20.
Dev Biol ; 157(1): 232-9, 1993 May.
Artículo en Inglés | MEDLINE | ID: mdl-8482413

RESUMEN

Recent evidence shows that kinesin-like proteins (Klps) form a very large multigene family. A recent study using the polymerase chain reaction (PCR) identified six new candidate Klps in Drosophila, making the total number of members of this family in Drosophila at least 11 (Stewart et al., 1991, Proc. Natl. Acad. Sci. USA 88, 4424-4427). The functional basis of this diversity is not clear. Different Klps could have cell type-specific functions, or they could perform different functions within the same cell type, or a mixture of both. To investigate the degree to which different Klps are expressed in the same cell, we chose the Xenopus oocyte. During oocyte differentiation, and in the egg, different types of microtubule-based motility occur; all are important to the normal development of the embryo after fertilization. Using PCR we identified and partially sequenced four novel Klp mRNAs from the Xenopus oocyte (denoted XKlps 1-4). Multialign sequence comparison suggests that one of them, XKlp3, may be the Xenopus counterpart of Drosophila Klp4. Similarly Xenopus Eg5 is closely related to Drosophila Klp2. Northern blot analysis reveals that the Xenopus XKlps have different patterns of expression during embryogenesis. These data show that at least four Klps can exist in the same cell and that they can be differentially regulated during early development, and suggest their differential function in oogenesis and early development.


Asunto(s)
Cinesinas/genética , Familia de Multigenes , Transcripción Genética , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN/genética , ADN/aislamiento & purificación , Drosophila/genética , Embrión no Mamífero/fisiología , Femenino , Biblioteca de Genes , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Reacción en Cadena de la Polimerasa/métodos , Mapeo Restrictivo , Homología de Secuencia de Aminoácido , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA