Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biol Res ; 57(1): 50, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113128

RESUMEN

BACKGROUND: In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS: The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS: This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.


Asunto(s)
Microbioma Gastrointestinal , Hemolinfa , Monofenol Monooxigenasa , Probióticos , Animales , Abejas/citología , Abejas/efectos de los fármacos , Abejas/enzimología , Abejas/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Hemocitos , Hemolinfa/citología , Inmunidad Innata , Italia , Monofenol Monooxigenasa/metabolismo , Probióticos/administración & dosificación
2.
J Agric Food Chem ; 72(28): 15416-15426, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38955361

RESUMEN

In recent years, there has been a growing interest in the pure casein fraction of milk protein, particularly ß-casein due to its physicochemical properties as well as its bio- and techno-functional properties. The utilization of self-assembled ß-caseins from bovine origin as nanocarriers for the delivery of nutraceutical compounds or drugs has increased dramatically. Concerning ß-caseins from other milk sources, the use of hypoallergenic donkey ß-caseins as a potential delivery vehicle for nutraceutical hydrophobic compounds is beginning to generate interest. The present review deals with casein micelles models, bovine and donkey ß-casein molecular structures, as well as their physical-chemical properties that account for their exploitation in nutraceutics and pharmaceutics. This review work suggests the possibility of developing delivery systems for hydrophobic bioactive compounds using ß-casein purified from hypoallergenic donkey milk, highlighting the potential of this protein as an innovative and promising vehicle for enhancing the enrichment and bioavailability of various bioactive substances in food products.


Asunto(s)
Caseínas , Equidae , Micelas , Leche , Animales , Caseínas/química , Bovinos , Leche/química , Portadores de Fármacos/química , Suplementos Dietéticos/análisis , Interacciones Hidrofóbicas e Hidrofílicas
3.
Food Funct ; 15(1): 419-426, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099708

RESUMEN

Gluten-containing (GC) and gluten-free (GF) pasta consumption has been growing in recent years. The market offers a wide variety of pasta types, with differences in shape and formulation that influence the mastication process and, consequently, their nutritional behaviors (i.e. starch digestibility and glycemic response). This study investigated the effect of shape, gluten, and structural breakdown on in vitro starch digestibility and predicted the glycemic index (pGI) of GC and GF penne, spaghetti, and risoni. Pasta was cooked and minced to mimic short, intermediate, and long mastication efforts. Short mastication led to a higher number of big particles than intermediate and long mastications for all pasta samples, which was reflected in the different starch digestibility and pGI patterns. Multivariate analysis of variance showed that the three studied factors differently affected the in vitro starch digestion of pasta. Mastication effort, shape, and their interaction mainly affected the starch digestion rate and pGI. Gluten was the major factor in affecting the amount of digested starch. The results suggested that small shapes (i.e. risoni), the presence of gluten, and short mastication effort led to a lower pGI. The findings will be useful for the development of pasta products tailored to fulfill the needs of specific consumers following a rational food design approach.


Asunto(s)
Glútenes , Índice Glucémico , Glútenes/química , Almidón/química , Masticación , Digestión , Triticum/química , Harina/análisis
4.
Foods ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38231689

RESUMEN

Meat plays a significant role in human diets, providing a rich source of high-quality protein. With advancements in technology, research in the field of meat preservation has been undergoing dynamic evolution. To gain insights into the development of this discipline, the study conducted an analysis and knowledge structure mapping of 1672 papers related to meat preservation research within the Web of Science Core Collection (WOSCC) spanning from 2001 to 2023. And using software tools such as VOSviewer 1.6.18 and CiteSpace 5.8.R3c allowed for the convenient analysis of the literature by strictly following the software operation manuals. Moreover, the knowledge structure of research in the field of meat preservation was synthesized within the framework of "basic research-technological application-integration of technology with fundamental research," aligning with the research content. Co-cited literature analysis indicated that meat preservation research could be further categorized into seven collections, as well as highlighting the prominent role of the antibacterial and antioxidant properties of plant essential oils in ongoing research. Subsequently, the future research direction and focus of the meat preservation field were predicted and prospected. The findings of this study could offer valuable assistance to researchers in swiftly comprehending the discipline's development and identifying prominent research areas, thus providing valuable guidance for shaping research topics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA