Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3776, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710707

RESUMEN

The causes of temporal fluctuations in adult traits are poorly understood. Here, we investigate the genetic determinants of within-person trait variability of 8 repeatedly measured anthropometric traits in 50,117 individuals from the UK Biobank. We found that within-person (non-directional) variability had a SNP-based heritability of 2-5% for height, sitting height, body mass index (BMI) and weight (P ≤ 2.4 × 10-3). We also analysed longitudinal trait change and show a loss of both average height and weight beyond about 70 years of age. A variant tracking the Alzheimer's risk APOE- E 4 allele (rs429358) was significantly associated with weight loss ( ß = -0.047 kg per yr, s.e. 0.007, P = 2.2 × 10-11), and using 2-sample Mendelian Randomisation we detected a relationship consistent with causality between decreased lumbar spine bone mineral density and height loss (bxy = 0.011, s.e. 0.003, P = 3.5 × 10-4). Finally, population-level variance quantitative trait loci (vQTL) were consistent with within-person variability for several traits, indicating an overlap between trait variability assessed at the population or individual level. Our findings help elucidate the genetic influence on trait-change within an individual and highlight disease risks associated with these changes.


Asunto(s)
Apolipoproteínas E , Estatura , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Enfermedad de Alzheimer/genética , Antropometría , Apolipoproteínas E/genética , Estatura/genética , Peso Corporal/genética , Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Estudios Longitudinales , Vértebras Lumbares , Análisis de la Aleatorización Mendeliana , Biobanco del Reino Unido , Reino Unido
2.
Nat Genet ; 56(5): 767-777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689000

RESUMEN

We develop a method, SBayesRC, that integrates genome-wide association study (GWAS) summary statistics with functional genomic annotations to improve polygenic prediction of complex traits. Our method is scalable to whole-genome variant analysis and refines signals from functional annotations by allowing them to affect both causal variant probability and causal effect distribution. We analyze 50 complex traits and diseases using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and up to 34% in cross-ancestry prediction compared to the baseline method SBayesR, which does not use annotations, and outperforms other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and PRS-CSx. Investigation of factors affecting prediction accuracy identifies a significant interaction between SNP density and annotation information, suggesting whole-genome sequence variants with annotations may further improve prediction. Functional partitioning analysis highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from nonsynonymous SNPs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Anotación de Secuencia Molecular , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Anotación de Secuencia Molecular/métodos , Genómica/métodos , Genoma Humano , Modelos Genéticos
3.
Nat Commun ; 15(1): 2713, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548728

RESUMEN

DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.


Asunto(s)
Metilación de ADN , Pueblos del Este de Asia , Humanos , Metilación de ADN/genética , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
4.
Commun Med (Lond) ; 4(1): 43, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472333

RESUMEN

BACKGROUND: Substance use behaviours (SUB) including smoking, alcohol consumption, and coffee intake are associated with many health outcomes. However, whether the health effects of SUB are causal remains controversial, especially for alcohol consumption and coffee intake. METHODS: In this study, we assess 11 commonly used Mendelian Randomization (MR) methods by simulation and apply them to investigate the causal relationship between 7 SUB traits and health outcomes. We also combine stratified regression, genetic correlation, and MR analyses to investigate the dosage-dependent effects. RESULTS: We show that smoking initiation has widespread risk effects on common diseases such as asthma, type 2 diabetes, and peripheral vascular disease. Alcohol consumption shows risk effects specifically on cardiovascular diseases, dyslipidemia, and hypertensive diseases. We find evidence of dosage-dependent effects of coffee and tea intake on common diseases (e.g., cardiovascular disease and osteoarthritis). We observe that the minor allele effect of rs4410790 (the top signal for tea intake level) is negative on heavy tea intake ( b ̂ G W A S = - 0.091 , s . e . = 0.007 , P = 4.90 × 10 - 35 ) but positive on moderate tea intake ( b ̂ G W A S = 0.034 , s . e . = 0.006 , P = 3.40 × 10 - 8 ) , compared to the non-tea-drinkers. CONCLUSION: Our study reveals the complexity of the health effects of SUB and informs design for future studies aiming to dissect the causal relationships between behavioural traits and complex diseases.


Many people smoke or consume alcohol, coffee and tea. The relationship between using these types of substance and the development of different diseases is not well understood. Previous studies have suggested that differences in genetics, i.e. inherited characteristics, could have an impact on how each substance impacts a particular person's health. We used a method called Mendelian Randomization to look at the impact of consuming tobacco, alcohol, coffee and tea on the development of various common diseases using genetic information. We found that relationships were complicated and many were dosage-dependent, but that consumption of a large amount of all substances tended to have negative health impacts regardless of lifestyle, behavioural or inherited characteristics.

6.
PLoS Genet ; 19(11): e1011033, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37963177

RESUMEN

Vitamin D status-a complex trait influenced by environmental and genetic factors-is tightly associated with skin colour and ancestry. Yet very few studies have investigated the genetic underpinnings of vitamin D levels across diverse ancestries, and the ones that have, relied on small sample sizes, resulting in inconclusive results. Here, we conduct genome-wide association studies (GWAS) of 25 hydroxyvitamin D (25OHD)-the main circulating form of vitamin D-in 442,435 individuals from four broad genetically-determined ancestry groups represented in the UK Biobank: European (N = 421,867), South Asian (N = 9,983), African (N = 8,306) and East Asian (N = 2,279). We identify a new genetic determinant of 25OHD (rs146759773) in individuals of African ancestry, which was not detected in previous analysis of much larger European cohorts due to low minor allele frequency. We show genome-wide significant evidence of dominance effects in 25OHD that protect against vitamin D deficiency. Given that key events in the synthesis of 25OHD occur in the skin and are affected by pigmentation levels, we conduct GWAS of 25OHD stratified by skin colour and identify new associations. Lastly, we test the interaction between skin colour and variants associated with variance in 25OHD levels and identify two loci (rs10832254 and rs1352846) whose association with 25OHD differs in individuals of distinct complexions. Collectively, our results provide new insights into the complex relationship between 25OHD and skin colour and highlight the importance of diversity in genomic studies. Despite the much larger rates of vitamin D deficiency that we and others report for ancestry groups with dark skin (e.g., South Asian), our study highlights the importance of considering ancestral background and/or skin colour when assessing the implications of low vitamin D.


Asunto(s)
Estudio de Asociación del Genoma Completo , Deficiencia de Vitamina D , Humanos , Polimorfismo de Nucleótido Simple/genética , Vitamina D/genética , Deficiencia de Vitamina D/genética
8.
Nat Genet ; 55(10): 1769-1776, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723263

RESUMEN

Genome-wide association studies (GWASs) have been mostly conducted in populations of European ancestry, which currently limits the transferability of their findings to other populations. Here, we show, through theory, simulations and applications to real data, that adjustment of GWAS analyses for polygenic scores (PGSs) increases the statistical power for discovery across all ancestries. We applied this method to analyze seven traits available in three large biobanks with participants of East Asian ancestry (n = 340,000 in total) and report 139 additional associations across traits. We also present a two-stage meta-analysis strategy whereby, in contributing cohorts, a PGS-adjusted GWAS is rerun using PGSs derived from a first round of a standard meta-analysis. On average, across traits, this approach yields a 1.26-fold increase in the number of detected associations (range 1.07- to 1.76-fold increase). Altogether, our study demonstrates the value of using PGSs to increase the power of GWASs in underrepresented populations and promotes such an analytical strategy for future GWAS meta-analyses.


Asunto(s)
Pueblos del Este de Asia , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Pueblos del Este de Asia/genética
9.
Science ; 381(6665): eadf6218, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769091

RESUMEN

A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.


Asunto(s)
Adaptación Biológica , Pico , Pinzones , Introgresión Genética , Especiación Genética , Selección Genética , Animales , Pico/anatomía & histología , Ecuador , Pinzones/anatomía & histología , Pinzones/genética , Frecuencia de los Genes , Metagenómica , Sitios Genéticos
10.
Cell Genom ; 3(8): 100344, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601976

RESUMEN

Molecular quantitative trait loci (xQTLs) are often harnessed to prioritize genes or functional elements underpinning variant-trait associations identified from genome-wide association studies (GWASs). Here, we introduce OPERA, a method that jointly analyzes GWAS and multi-omics xQTL summary statistics to enhance the identification of molecular phenotypes associated with complex traits through shared causal variants. Applying OPERA to summary-level GWAS data for 50 complex traits (n = 20,833-766,345) and xQTL data from seven omics layers (n = 100-31,684) reveals that 50% of the GWAS signals are shared with at least one molecular phenotype. GWAS signals shared with multiple molecular phenotypes, such as those at the MSMB locus for prostate cancer, are particularly informative for understanding the genetic regulatory mechanisms underlying complex traits. Future studies with more molecular phenotypes, measured considering spatiotemporal effects in larger samples, are required to obtain a more saturated map linking molecular intermediates to GWAS signals.

11.
Cell Rep ; 42(8): 112896, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37505983

RESUMEN

The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.


Asunto(s)
Inversión Cromosómica , Polimorfismo Genético , Adulto , Niño , Humanos , Inversión Cromosómica/genética , Encéfalo
12.
Am J Hum Genet ; 110(7): 1207-1215, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379836

RESUMEN

In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Herencia Multifactorial/genética , Fenotipo , Simulación por Computador
13.
Nat Med ; 29(4): 936-949, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076741

RESUMEN

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Sueño-Vigilia , Niño , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Lipidómica , Calidad de Vida , Australia/epidemiología , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/complicaciones , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción
14.
Proc Natl Acad Sci U S A ; 120(11): e2214834120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893272

RESUMEN

Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Adulto , Humanos , Corteza Cerebral/anatomía & histología , Corteza Prefrontal , Encéfalo
15.
Hum Mol Genet ; 32(11): 1912-1921, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36790133

RESUMEN

Testing the effect of rare variants on phenotypic variation is difficult due to the need for extremely large cohorts to identify associated variants given expected effect sizes. An alternative approach is to investigate the effect of rare genetic variants on DNA methylation (DNAm) as effect sizes are expected to be larger for molecular traits compared with complex traits. Here, we investigate DNAm in healthy ageing populations-the Lothian Birth Cohorts of 1921 and 1936-and identify both transient and stable outlying DNAm levels across the genome. We find an enrichment of rare genetic single nucleotide polymorphisms (SNPs) within 1 kb of DNAm sites in individuals with stable outlying DNAm, implying genetic control of this extreme variation. Using a family-based cohort, the Brisbane Systems Genetics Study, we observed increased sharing of DNAm outliers among more closely related individuals, consistent with these outliers being driven by rare genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on gene expression levels, with extreme levels of DNAm being associated with gene expression levels toward the tails of the population distribution. This study demonstrates the role of rare SNPs in the phenotypic variation of DNAm and the effect of extreme levels of DNAm on gene expression.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Humanos , Metilación de ADN/genética , Fenotipo , Herencia Multifactorial , Epigénesis Genética
16.
Am J Hum Genet ; 110(2): 179-194, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634672

RESUMEN

It has been 15 years since the advent of the genome-wide association study (GWAS) era. Here, we review how this experimental design has realized its promise by facilitating an impressive range of discoveries with remarkable impact on multiple fields, including population genetics, complex trait genetics, epidemiology, social science, and medicine. We predict that the emergence of large-scale biobanks will continue to expand to more diverse populations and capture more of the allele frequency spectrum through whole-genome sequencing, which will further improve our ability to investigate the causes and consequences of human genetic variation for complex traits and diseases.


Asunto(s)
Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Frecuencia de los Genes , Herencia Multifactorial , Polimorfismo de Nucleótido Simple
17.
Am J Hum Genet ; 110(1): 30-43, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608683

RESUMEN

Gene-based association tests aggregate multiple SNP-trait associations into sets defined by gene boundaries and are widely used in post-GWAS analysis. A common approach for gene-based tests is to combine SNPs associations by computing the sum of χ2 statistics. However, this strategy ignores the directions of SNP effects, which could result in a loss of power for SNPs with masking effects, e.g., when the product of two SNP effects and the linkage disequilibrium (LD) correlation is negative. Here, we introduce "mBAT-combo," a set-based test that is better powered than other methods to detect multi-SNP associations in the context of masking effects. We validate the method through simulations and applications to real data. We find that of 35 blood and urine biomarker traits in the UK Biobank, 34 traits show evidence for masking effects in a total of 4,273 gene-trait pairs, indicating that masking effects is common in complex traits. We further validate the improved power of our method in height, body mass index, and schizophrenia with different GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-combo with smaller sample sizes can be identified by the single-SNP approach with a 1.7-fold increase in sample sizes. Eleven genes significant only in mBAT-combo for schizophrenia are confirmed by functionally informed fine-mapping or Mendelian randomization integrating gene expression data. The framework of mBAT-combo can be applied to any set of SNPs to refine trait-association signals hidden in genomic regions with complex LD structures.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Desequilibrio de Ligamiento , Genómica , Polimorfismo de Nucleótido Simple/genética
18.
Nat Commun ; 14(1): 451, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707517

RESUMEN

The genetic regulation of post-prandial glucose levels is poorly understood. Here, we characterise the genetic architecture of blood glucose variably measured within 0 and 24 h of fasting in 368,000 European ancestry participants of the UK Biobank. We found a near-linear increase in the heritability of non-fasting glucose levels over time, which plateaus to its fasting state value after 5 h post meal (h2 = 11%; standard error: 1%). The genetic correlation between different fasting times is > 0.77, suggesting that the genetic control of glucose is largely constant across fasting durations. Accounting for heritability differences between fasting times leads to a ~16% improvement in the discovery of genetic variants associated with glucose. Newly detected variants improve the prediction of fasting glucose and type 2 diabetes in independent samples. Finally, we meta-analysed summary statistics from genome-wide association studies of random and fasting glucose (N = 518,615) and identified 156 independent SNPs explaining 3% of fasting glucose variance. Altogether, our study demonstrates the utility of random glucose measures to improve the discovery of genetic variants associated with glucose homeostasis, even in fasting conditions.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Humanos , Glucemia/análisis , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Glucosa , Ayuno , Polimorfismo de Nucleótido Simple
19.
Clin Res Cardiol ; 112(2): 247-257, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35987817

RESUMEN

BACKGROUND: The joint contribution of genetic and environmental exposures to noncommunicable diseases is not well characterized. OBJECTIVES: We modeled the cumulative effects of common risk alleles and their prevalence variations with classical risk factors. METHODS: We analyzed mathematically and statistically numbers and effect sizes of established risk alleles for coronary artery disease (CAD) and other conditions. RESULTS: In UK Biobank, risk alleles counts in the lowest (175.4) and highest decile (205.7) of the distribution differed by only 16.9%, which nevertheless increased CAD prevalence 3.4-fold (p < 0.01). Irrespective of the affected gene, a single risk allele multiplied the effects of all others carried by a person, resulting in a 2.9-fold stronger effect size in the top versus the bottom decile (p < 0.01) and an exponential increase in risk (R > 0.94). Classical risk factors shifted effect sizes to the steep upslope of the logarithmic function linking risk allele numbers with CAD prevalence. Similar phenomena were observed in the Estonian Biobank and for risk alleles affecting diabetes mellitus, breast and prostate cancer. CONCLUSIONS: Alleles predisposing to common diseases can be carried safely in large numbers, but few additional ones lead to sharp risk increments. Here, we describe exponential functions by which risk alleles combine interchangeably but multiplicatively with each other and with modifiable risk factors to affect prevalence. Our data suggest that the biological systems underlying these diseases are modulated by hundreds of genes but become only fragile when a narrow window of total risk, irrespective of its genetic or environmental origins, has been passed.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Alelos , Reino Unido/epidemiología , Prevalencia
20.
Genome Biol ; 23(1): 216, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253871

RESUMEN

BACKGROUND: DNA methylation is an epigenetic mark associated with the repression of gene promoters. Its pattern in the genome is disrupted with age and these changes can be used to statistically predict age with epigenetic clocks. Altered rates of aging inferred from these clocks are observed in human disease. However, the molecular mechanisms underpinning age-associated DNA methylation changes remain unknown. Local DNA sequence can program steady-state DNA methylation levels, but how it influences age-associated methylation changes is unknown. RESULTS: We analyze longitudinal human DNA methylation trajectories at 345,895 CpGs from 600 individuals aged between 67 and 80 to understand the factors responsible for age-associated epigenetic changes at individual CpGs. We show that changes in methylation with age occur at 182,760 loci largely independently of variation in cell type proportions. These changes are especially apparent at 8322 low CpG density loci. Using SNP data from the same individuals, we demonstrate that methylation trajectories are affected by local sequence polymorphisms at 1487 low CpG density loci. More generally, we find that low CpG density regions are particularly prone to change and do so variably between individuals in people aged over 65. This differs from the behavior of these regions in younger individuals where they predominantly lose methylation. CONCLUSIONS: Our results, which we reproduce in two independent groups of individuals, demonstrate that local DNA sequence influences age-associated DNA methylation changes in humans in vivo. We suggest that this occurs because interactions between CpGs reinforce maintenance of methylation patterns in CpG dense regions.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Islas de CpG , Epigenómica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA