Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Rheum Dis ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986577

RESUMEN

OBJECTIVES: Bone remodelling is a highly dynamic process dependent on the precise coordination of osteoblasts and haematopoietic-cell derived osteoclasts. Changes in core metabolic pathways during osteoclastogenesis, however, are largely unexplored and it is unknown whether and how these processes are involved in bone homeostasis. METHODS: We metabolically and transcriptionally profiled cells during osteoclast and osteoblast generation. Individual gene expression was characterised by quantitative PCR and western blot. Osteoblast function was assessed by Alizarin red staining. immunoresponsive gene 1 (Irg1)-deficient mice were used in various inflammatory or non-inflammatory models of bone loss. Tissue gene expression was analysed by RNA in situ hybridisation. RESULTS: We show that during differentiation preosteoclasts rearrange their tricarboxylic acid cycle, a process crucially depending on both glucose and glutamine. This rearrangement is characterised by the induction of Irg1 and production of itaconate, which accumulates intracellularly and extracellularly. While the IRG1-itaconate axis is dispensable for osteoclast generation in vitro and in vivo, we demonstrate that itaconate stimulates osteoblasts by accelerating osteogenic differentiation in both human and murine cells. This enhanced osteogenic differentiation is accompanied by reduced proliferation and altered metabolism. Additionally, supplementation of itaconate increases bone formation by boosting osteoblast activity in mice. Conversely, Irg1-deficient mice exhibit decreased bone mass and have reduced osteoproliferative lesions in experimental arthritis. CONCLUSION: In summary, we identify itaconate, generated as a result of the metabolic rewiring during osteoclast differentiation, as a previously unrecognised regulator of osteoblasts.

2.
Methods Mol Biol ; 2713: 363-376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639136

RESUMEN

Functional reprograming of cells is linked to a process of metabolic rewiring that is adapted for such new functions or microenvironment. Macrophages are present in all tissues and exposed to different microenvironments throughout our body. Profiling energetic metabolism of tissue resident and other heterogeneous populations of macrophages in vitro and ex vivo is technologically very challenging. We have recently developed a method to functionally profile energetic metabolism with single-cell resolution, named SCENITH. This method can be performed rapidly ex vivo and does not require specialized equipment. In this book chapter, we will summarize the tissue processing, the procedure and methods, the analysis and example of results, and a series of frequently asked questions.


Asunto(s)
Reprogramación Celular , Macrófagos , Macrófagos/metabolismo
3.
Cell Metab ; 35(11): 1931-1943.e8, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37804836

RESUMEN

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.


Asunto(s)
Poliaminas , Espermina , Ratones , Animales , Espermina/metabolismo , Poliaminas/metabolismo , Colon , Mucosa Intestinal/metabolismo , Homeostasis , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Curr Opin Biotechnol ; 83: 102984, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572419

RESUMEN

Macrophages within the tumor microenvironment of solid tumors and metastasis are heterogeneous populations, which contribute to diverse steps of tumorigenesis. Tumor-associated macrophages (TAMs) can either derive from circulation-derived monocytes or tissue-resident macrophages (TRMs). In health, TRMs populate the majority of tissues, orchestrating critical homeostatic and reparative functions. While TRM-specific functions in tumor initiation and progression remain unclear, recent studies have revealed that TRMs are a significant source of TAMs in both mouse and human cancers, where they closely resemble gene signatures of their normal, organ-specific TRM counterparts. In this review, we highlight recent advances toward systematically understanding the role of TRMs as an important TAM subset and opportunities how this macrophage population could be exploited for therapeutical targeting strategies.


Asunto(s)
Macrófagos , Neoplasias , Animales , Humanos , Ratones , Macrófagos/patología , Neoplasias/patología , Microambiente Tumoral
6.
Cell Rep ; 42(1): 111977, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640334

RESUMEN

During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.


Asunto(s)
Decidua , Trofoblastos , Embarazo , Femenino , Humanos , Primer Trimestre del Embarazo/fisiología , Decidua/metabolismo , Trofoblastos/metabolismo , Fenotipo , Macrófagos/metabolismo
7.
STAR Protoc ; 3(3): 101653, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36065293

RESUMEN

By their capacity to induce peripheral T cell tolerance, dendritic cells (DCs) present a promising target cell and therapeutic strategy for treatment of several autoimmune diseases including multiple sclerosis (MS). This protocol describes how to determine the tolerogenic capacities of DCs in the context of the murine MS model, experimental autoimmune encephalomyelitis (EAE). We provide a step-by-step instruction for EAE induction, antigen-loaded bone-marrow-derived-DC (BM-DC) generation, adoptive cell transfer, and analysis of DC-mediated changes in regulatory T cell populations. For complete details on the use and execution of this protocol, please refer to Vogel et al. (2022).


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Traslado Adoptivo , Animales , Antígenos , Células Dendríticas , Encefalomielitis Autoinmune Experimental/terapia , Ratones , Linfocitos T Reguladores
8.
Front Immunol ; 13: 695576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514976

RESUMEN

Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Células Dendríticas , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
9.
Cell Rep ; 38(8): 110420, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196494

RESUMEN

Dendritic cells (DCs) induce peripheral T cell tolerance, but cell-intrinsic signaling cascades governing their stable tolerogenesis remain poorly defined. Janus Kinase 1 (JAK1) transduces cytokine-receptor signaling, and JAK inhibitors (Jakinibs), including JAK1-specific filgotinib, break inflammatory cycles in autoimmunity. Here, we report in heterogeneous DC populations of multiple secondary lymphoid organs that JAK1 promotes peripheral T cell tolerance during experimental autoimmune encephalomyelitis (EAE). Mice harboring DC-specific JAK1 deletion exhibit elevated peripheral CD4+ T cell expansion, less regulatory T cells (Tregs), and worse EAE outcomes, whereas adoptive DC transfer ameliorates EAE pathogenesis by inducing peripheral Tregs, programmed cell death ligand 1 (PD-L1) dependently. This tolerogenic program is substantially reduced upon the transfer of JAK1-deficient DCs. DC-intrinsic IFN-γ-JAK1-STAT1 signaling induces PD-L1, which is required for DCs to convert CD4+ T cells into Tregs in vitro and attenuated upon JAK1 deficiency and filgotinib treatment. Thus, DC-intrinsic JAK1 promotes peripheral tolerance, suggesting potential unwarranted DC-mediated effects of Jakinibs in autoimmune diseases.


Asunto(s)
Antígeno B7-H1 , Encefalomielitis Autoinmune Experimental , Janus Quinasa 1 , Linfocitos T Reguladores , Animales , Autoinmunidad , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Células Dendríticas/metabolismo , Tolerancia Inmunológica , Janus Quinasa 1/inmunología , Janus Quinasa 1/metabolismo , Ratones , Tolerancia Periférica
10.
Artículo en Inglés | MEDLINE | ID: mdl-34626791

RESUMEN

Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.


Asunto(s)
Inflamación/genética , Lípidos/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Transporte Biológico/genética , Homeostasis/genética , Humanos , Inflamación/metabolismo , Inflamación/patología
11.
Diabetes ; 70(9): 2042-2057, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33627323

RESUMEN

Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health. Here, we identified that in mice, TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation, or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health, instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in the systemic protective effects of TREM2 on metabolic health.


Asunto(s)
Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidad/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Dieta Alta en Grasa , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Ratones , Regulación hacia Arriba
12.
Gut ; 70(7): 1345-1361, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32907830

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN: TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS: TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION: TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Dietilnitrosamina , Femenino , Mutación con Ganancia de Función , Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Hepatitis/metabolismo , Hepatocitos/patología , Hepatocitos/fisiología , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Regeneración Hepática/genética , Regeneración Hepática/fisiología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Estrés Oxidativo , Factores Protectores , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/metabolismo , Esferoides Celulares , Regulación hacia Arriba , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteína Wnt3/metabolismo
13.
Nat Metab ; 2(12): 1427-1442, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33199895

RESUMEN

Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/genética , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Adipocitos/patología , Tejido Adiposo/patología , Animales , Trasplante de Médula Ósea , Diferenciación Celular , Quimera , Prueba de Tolerancia a la Glucosa , Lipidómica , Macrófagos/patología , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Receptores Inmunológicos/genética , Transducción de Señal/genética
14.
Nat Commun ; 11(1): 431, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969567

RESUMEN

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Asunto(s)
Arginina/metabolismo , Células Gigantes/inmunología , Animales , Artritis/genética , Artritis/metabolismo , Artritis/fisiopatología , Remodelación Ósea , Ciclo del Ácido Cítrico , Femenino , Células Gigantes/citología , Humanos , Interleucina-4/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/genética , Ligando RANK/metabolismo
16.
Front Immunol ; 10: 2002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497027

RESUMEN

Class 1 Phosphoinositide-3-Kinases (PI3Ks) have been widely studied and mediate essential roles in cellular proliferation, chemotaxis, insulin sensitivity, and immunity. Here, we provide a comprehensive overview of how macrophage expressed PI3Ks and their downstream pathways orchestrate responses to metabolic stimuli and nutrients, polarizing macrophages, shaping their cellular identity and function. Particular emphasis will be given to adipose tissue macrophages, crucial players of insulin resistance and chronic metabolically triggered inflammation during obesity. An understanding of PI3K dependent wiring of macrophage responses is important as this is involved in various diseases ranging from obesity, type 2 diabetes to chronic inflammatory disease.


Asunto(s)
Macrófagos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Tejido Adiposo/inmunología , Animales , Supervivencia Celular , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Activación de Macrófagos , Células Mieloides/metabolismo , Obesidad/inmunología
17.
Mol Immunol ; 111: 32-42, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30959419

RESUMEN

The peripheral activation of autoreactive T cells and subsequent central nervous system (CNS) immune cell infiltration are key events relevant for experimental autoimmune encephalomyelitis (EAE), a commonly employed multiple sclerosis (MS) model, influenced by TH1 and TH17 mediated immunity. The phosphoinositide-3-kinase (PI3K)-AKT kinase pathway modulates outcome during EAE, with direct actions of PI3K on adaptive immunity implicated in deleterious and effects on antigen presenting cells involved in beneficial responses during EAE. Here, by genetically deleting the regulatory subunit of Class Ia PI3K, p85α, in selective myeloid cells, we aimed to resolve the impact of PI3K in EAE. While genetically deleting PI3K in LysM expressing cells exerted unremarkable effects, attenuating PI3K function in CD11c+ dendritic cells (DCs), promoted secretion of pathogenic EAE promoting cytokines, particularly skewing TH1 and TH17 immunity, while notably, improving health in EAE. Neutralizing IFN-γ activity using blocking antibodies revealed a prolonged TH1 response was critical for the decreased disease of these animals. Thus, PI3K-AKT signaling in DCs acts in a paradoxical manner. While attenuating EAE associated TH1 and TH17 responses, it impairs health during autoimmune inflammation.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sistema Nervioso Central/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Interferón gamma/inmunología , Ratones , Esclerosis Múltiple/inmunología , Células Mieloides/inmunología , Células TH1/inmunología , Células Th17/inmunología
18.
J Neurophysiol ; 119(4): 1576-1588, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361665

RESUMEN

Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.


Asunto(s)
Potenciales de Acción/fisiología , Arvicolinae/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Preferencia en el Apareamiento Animal/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Conducta Social , Animales , Masculino , Técnicas de Placa-Clamp
19.
Sci Rep ; 8(1): 1396, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362383

RESUMEN

The genetic and environmental factors that contribute to pair bonding behaviour remain poorly understood. Prairie voles (Microtus ochrogaster) often, but not always, form stable pair bonds and present an ideal model species for investigating the genetic and environmental factors that influence monogamy. Here, we assessed variation in partner preference, a measure of pair bonding, and related social behaviours in a population of laboratory-reared prairie voles under controlled environmental conditions. We evaluated to what extent variation in these behaviours correlate with vasopressin 1a receptor (V1aR) expression in the ventral pallidum (VP) and retrosplenial cortex (RSC), and estimated the heritability of these behaviours and V1aR expression. We found substantial variation in partner preference and measures of aggression, paternal care, and anxiety-like behaviours, but no correlation between these traits. We also found variation in V1aR density in the VP and RSC can account for behavioural components of paternal care and aggression, but not in partner preference. Heritability estimates of variation in partner preference were low, yet heritability estimates for V1aR expression were high, indicating that the extensive variation in partner preference observed within this population is due largely to environmental plasticity.


Asunto(s)
Arvicolinae/fisiología , Receptores de Vasopresinas/metabolismo , Conducta Social , Animales , Prosencéfalo Basal/metabolismo , Femenino , Masculino , Preferencia en el Apareamiento Animal , Apareamiento
20.
J Insect Physiol ; 72: 14-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25445663

RESUMEN

Atrazine is a commonly utilized herbicide to control broadleaf weeds in the agricultural setting. It can, however, have negative effects on male reproductive performance in a variety of vertebrate species. Much less is known, however, about the effects of atrazine on invertebrates. In this study, we investigated the effects of several different concentrations of larval atrazine exposure on measures of reproductive performance in adult male Drosophila melanogaster. Atrazine exposure had significant effects on a male's mating ability and the number of eggs his partner laid when he was successful at mating. Exposed males also sired a smaller proportion of the offspring under competitive conditions when they were the first male to mate to a doubly mated female. Atrazine exposure had no measurable effect on a male's ability to prevent a mated female from mating to another male or on the proportion of offspring sired when the exposed males were the second male to mate. Exposure upregulated expression of one male reproductive gene, ovulin, but had no effect on expression of another, sex peptide. Exposed males produced and transferred more sex peptide protein to the female during mating but ovulin protein levels were not affected. In general, we observed non-monotonic responses such that the intermediate exposure levels showed the largest reduction in male reproductive performance. This study suggests that atrazine exposure affects male reproductive performance in insects and future studies should aim to understand the molecular mechanisms underlying the fitness effects of exposure.


Asunto(s)
Atrazina/toxicidad , Drosophila melanogaster/efectos de los fármacos , Herbicidas/toxicidad , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Expresión Génica , Larva/efectos de los fármacos , Larva/fisiología , Masculino , Reproducción/efectos de los fármacos , Semen/química , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA