Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Invertebr Pathol ; 206: 108161, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914370

RESUMEN

Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease in the American continent. Here, we have tested a loop-mediated isothermal amplification (LAMP) test for a direct detection of T. cruzi in feces of Triatoma infestans, the main vector of this parasite in the Southern Cone of America. The analytical evaluation showed positive results with samples of triatomine feces artificially inoculated with DNA from strains of T. cruzi corresponding to each Discrete Typing Units (I-VI), with a sensitivity of up to one parasite per reaction. Conversely, the reaction yielded negative results when tested with DNA from Trypanosoma rangeli and other phylogenetically related and unrelated organisms. In triatomines captured under real field conditions (from urban households), and defined as positive or negative for T. cruzi using the reference microscopy technique, the LAMP test achieved a concordance of 100 %. Our results demonstrate that this LAMP reaction exhibits excellent analytical specificity and sensitivity without interference from the fecal matrix, since all the reactions were conducted without purification steps. This simple molecular diagnostic technique can be easily used by vector control agencies under field conditions.

2.
Viruses ; 15(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37766315

RESUMEN

Since, during the Coronavirus disease 19 (COVID-19) pandemic, a large part of the human population has become infected, a rapid and simple diagnostic method has been necessary to detect its causative agent, the Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), and control its spread. Thus, in the present study, we developed a colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) kit that allows the detection of SARS-CoV-2 from nasopharyngeal swab samples without the need for RNA extraction. The kit utilizes three sets of LAMP primers targeting two regions of ORF1ab and one region in the E gene. The results are based on the colorimetric change of hydroxynaphthol blue, which allows visual interpretation without needing an expensive instrument. The kit demonstrated sensitivity to detect between 50 and 100 copies of the viral genome per reaction. The kit was authorized by the National Administration of Drugs, Food and Technology (ANMAT) of Argentina after validation using samples previously analyzed by the gold standard RT-qPCR. The results showed a sensitivity of 90.6% and specificity of 100%, consistent with conventional RT-qPCR. In silico analysis confirmed the recognition of SARS-CoV-2 variants of concern (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427, and B.1.429), and lineages of the Omicron variant (B.1.1.529) with 100% homology. This rapid, simple, and sensitive RT-LAMP method paves the way for a large screening strategy to be carried out at locations lacking sophisticated instrumental and trained staff, as it particularly happens in regional hospitals and medical centers from rural areas.

3.
Front Microbiol ; 14: 1185368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440880

RESUMEN

Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.

4.
Data Brief ; 42: 108255, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35669005

RESUMEN

The accuracy of screening tests for detecting cystic echinococcosis (CE) in livestock depends on characteristics of the host-parasite interaction and the extent of serological cross-reactivity with other taeniid species. The AgB8 kDa protein is considered to be the most specific native or recombinant antigen for immunodiagnosis of ovine CE. A particular DNA fragment coding for rAgB8/2 was identified, that provides evidence of specific reaction in the serodiagnosis of metacestode infection. We developed and validated an IgG Enzyme Linked Immunosorbent Assay (ELISA) test using a recombinant antigen B sub-unit EgAgB8/2 (rAgB8/2) of Echinoccocus granulosus sensu lato (s.l.) to estimate CE prevalence in sheep. A 273 bp DNA fragment coding for rAgB8/2 was expressed as a fusion protein (∼30 kDa) and purified by affinity chromatography. Evaluation of the analytical and diagnostic performance of the ELISA followed the World Organisation for Animal Health (OIE) manual, including implementation of serum panels from: uninfected lambs (n = 79); experimentally infected (with 2,000 E. granulosus s.l. eggs each) sheep with subsequent evidence of E. granulosus cysts by necropsy (n = 36), and animals carrying other metacestode/trematode infections (n = 20). The latter were used to assess the cross-reactivity of rAgB8/2, with these animals being naturally infected with Taenia hydatigena, Thysanosoma actinioides and/or Fasciola hepatica. EgAgB8/2 showed cross-reaction with only one serum sample from a sheep infected with Ta. hydatigena out of the 20 animals tested. Furthermore, the kinetics of the humoral response over time in five 6-month old sheep, each experimentally infected with 2,000 E. granulosus s.l. eggs, was evaluated up to 49 weeks (approximately one year) post infection (n = 5). The earliest detectable IgG response against rAgB8/2 was observed in sera from two and four sheep, 7 and 14 days after experimental infection, respectively. The highest immune response across all five animals was found 16 to 24 weeks post infection.

5.
Sci Rep ; 12(1): 10872, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761017

RESUMEN

Identifying high-yield genotypes under low water availability is essential for soybean climate-smart breeding. However, a major bottleneck lies in phenotyping, particularly in selecting cost-efficient markers associated with stress tolerance and yield stabilization. Here, we conducted in-depth phenotyping experiments in two soybean genotypes with contrasting drought tolerance, MUNASQA (tolerant) and TJ2049 (susceptible), to better understand soybean stress physiology and identify/statistically validate drought-tolerance and yield-stabilization traits as potential breeding markers. Firstly, at the critical reproductive stage (R5), the molecular differences between the genotype's responses to mild water deficit were explored through massive analysis of cDNA ends (MACE)-transcriptomic and gene ontology. MUNASQA transcriptional profile, compared to TJ2049, revealed significant differences when responding to drought. Next, both genotypes were phenotyped under mild water deficit, imposed in vegetative (V3) and R5 stages, by evaluating 22 stress-response, growth, and water-use markers, which were subsequently correlated between phenological stages and with yield. Several markers showed high consistency, independent of the phenological stage, demonstrating the effectiveness of the phenotyping methodology and its possible use for early selection. Finally, these markers were classified and selected according to their cost-feasibility, statistical weight, and correlation with yield. Here, pubescence, stomatal density, and canopy temperature depression emerged as promising breeding markers for the early selection of drought-tolerant soybeans.


Asunto(s)
Fabaceae , Glycine max , Sequías , Fitomejoramiento , Glycine max/genética , Agua
6.
Sci Adv ; 7(48): eabh1097, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818032

RESUMEN

Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light­absorbing) and Pfr (far-red light­absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen Xanthomonas campestris virulence regulator XccBphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states. The structures show a reorganization of the interaction networks within and around the chromophore-binding pocket, an α-helix/ß-sheet tongue transition, and specific domain reorientations, along with interchanging kinks and breaks at the helical spine as a result of the photoswitching, which subsequently affect the quaternary assembly. These structural findings, combined with multidisciplinary studies, allow us to describe the signaling mechanism of a full-length bacterial phytochrome at the atomic level.

7.
PLoS Negl Trop Dis ; 15(5): e0009406, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989282

RESUMEN

Rapid diagnosis by using small, simple, and portable devices could represent one of the best strategies to limit the damage and contain the spread of viral, bacterial or protozoa diseases, principally when they can be transmitted by air and are highly contagious, as some respiratory viruses are. The presence of antibodies in blood or serum samples is not the best option for deciding when a person must be quarantined to stop transmission of disease, given that cured patients have antibodies, so the best diagnosis methods rely on the use of nucleic acid amplification procedures. Here we present a very simple device and detection principle, based on paper discs coupled to contactless conductivity (C4D) sensors, can provide fast and easy diagnostics that are needed when an epidemic outbreak develops. The paper device presented here solves one of the main drawbacks that nucleic acid amplification tests have when they are performed outside of central laboratories. As the device is sealed before amplification and integrally disposed in this way, amplimers release cannot occur, allowing repetitive testing in the physician's practice, ambulances, or other places that are not prepared to avoid cross-contamination of new samples. The use of very low volume samples allows efficient reagent use and the development of low cost, simple, and disposable point-of-care diagnostic systems.


Asunto(s)
Enfermedad de Chagas/diagnóstico , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Trypanosoma cruzi/genética , ADN Protozoario/aislamiento & purificación , Conductividad Eléctrica , Límite de Detección , Papel , Pruebas en el Punto de Atención
8.
FEBS J ; 288(20): 5986-6002, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33864705

RESUMEN

Red/far-red light-sensing bacteriophytochrome photoreceptor (BphP) pathways play key roles in bacterial physiology and ecology. These bilin-binding proteins photoswitch between two states, Pr (red absorbing) and Pfr (far-red absorbing). The isomerization of the chromophore and the downstream structural changes result in the light signal transduction. The agricultural pathogen Xanthomonas campestris pv. campestris (Xcc) code for a single bathy-like type BphP (XccBphP), previously shown to negatively regulate several light-mediated biological processes involved in virulence. Here, we generated three different full-length variants with single amino acid changes within its GAF domain that affect the XccBphP photocycle favouring its Pr state: L193Q, L193N and D199A. While D199A recombinant protein locks XccBphP in a Pr-like state, L193Q and L193N exhibit a significant enrichment of the Pr form in thermal equilibrium. The X-ray crystal structures of the three variants were solved, resembling the wild-type protein in the Pr state. Finally, we studied the effects of altering the XccBphP photocycle on the exopolysaccharide xanthan production and stomatal aperture assays as readouts of its bacterial signalling pathway. Null-mutant complementation assays show that the photoactive Pr-favoured XccBphP variants L193Q and L193N tend to negatively regulate xanthan production in vivo. In addition, our results indicate that strains expressing these variants also promote stomatal apertures in challenged plant epidermal peels, compared to wild-type Xcc. The findings presented in this work provide new evidence on the Pr state of XccBphP as a negative regulator of the virulence-associated mechanisms by light in Xcc.


Asunto(s)
Arabidopsis/microbiología , Pigmentos Biliares/metabolismo , Fitocromo/química , Fitocromo/genética , Enfermedades de las Plantas/microbiología , Virulencia , Xanthomonas campestris/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Fitocromo/metabolismo
9.
Ann Bot ; 126(3): 413-422, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32266377

RESUMEN

BACKGROUND AND AIMS: Single-stranded DNA oligodeoxynucleotides (ssODNs) have been shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can activate immunity, although the exact mechanism through which they are sensed is not clear. The aim of this work was to study the possible effect of ssODNs on plant immunity. KEY RESULTS: The ssODNs IMT504 and 2006 increased protection against the pathogens Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against tobacco mosaic virus-Cg when infiltrated in Arabidopsis thaliana. In addition, ssODNs inhibited root growth and promoted stomatal closure in a concentration-dependent manner, with half-maximal effective concentrations between 0.79 and 2.06 µm. Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 mutants. CONCLUSIONS: ssODNs are capable of inducing protection against pathogens through the activation of defence genes and promotion of stomatal closure through a mechanism similar to that of other elicitors of plant immunity, which involves the BAK1 co-receptor, and ROS synthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Oligodesoxirribonucleótidos , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Factores de Transcripción
10.
Glycobiology ; 29(3): 269-278, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668692

RESUMEN

Xanthan is a virulence factor produced by Xanthomonas spp. We previously demonstrated that this exopolysaccharide is not only essential for pathogenicity by contributing with bacterial survival but also its pyruvate substituents interfere with some plant defense responses. Deepening our studies about xanthan properties and structure, the aim of this work was to analyze the characteristics of xanthan produced by Xanthomonas in different culture media. We analyzed the xanthan produced by Xanthomonas citri subsp. citri (Xcc) in leaf extracts from grapefruit (a susceptible host of this bacterium) and compared it with the xanthan produced in a synthetic culture medium. We found that the xanthan produced in the grapefruit extract (Xan-GLE) presented shorter and more disordered molecules than xanthan produced in the synthetic medium (Xan-PYM). Besides, Xan-GLE resulted less viscous than Xan-PYM. The disordered molecular conformation of Xan-GLE could be attributed to its higher pyruvilation degree and lower acetylation degree compared with those detected in Xan-PYM. Meanwhile, the difference in the viscosity of both xanthans could be due to their molecules length. Finally, we cultured Xcc in the presence of the Xan-GLE or Xan-PYM and observed the formation of biofilm-like structures in both cases. We found significant differences in biofilm architecture between the two conditions, being the biofilm produced in presence of Xan-GLE similar to that formed in canker lesions developed in lemon plant leaves. Together, these results show how xanthan structure and properties changed when Xcc grew in a natural substrate and can contribute to better understand the biological role of xanthan.


Asunto(s)
Citrus paradisi/química , Enfermedades de las Plantas/microbiología , Hojas de la Planta/química , Polisacáridos Bacterianos/química , Biopelículas/crecimiento & desarrollo , Citrus paradisi/microbiología , Hojas de la Planta/microbiología , Polisacáridos Bacterianos/biosíntesis , Xanthomonas/química , Xanthomonas/genética
11.
Mol Plant Pathol ; 20(4): 589-598, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30537413

RESUMEN

Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas citri ssp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the insertion of the Tn5 transposon, which showed impaired ability to attach to an abiotic substrate. One of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, homologue to the ß-subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These types of protein are necessary to maintain the bacterial nucleoid organization and the global regulation of gene expression. Here, we characterized the influence of the mutation in hupB regarding Xcc biofilm formation and virulence. The mutant strain hupB was incapable of swimming in soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also displayed reduced virulence compared with the wild-type strain when they were used to infect Citrus lemon plants using different infection methods. Our results therefore show that the histone-like protein HupB plays an essential role in the pathogenesis of Xcc through the regulation of biofilm formation and biosynthesis of the flagellum.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Flagelos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Mutación , Virulencia/genética , Virulencia/fisiología , Xanthomonas/genética
12.
Front Microbiol ; 9: 1548, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30061870

RESUMEN

Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.

13.
Plant Mol Biol ; 93(6): 607-621, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28155188

RESUMEN

Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.


Asunto(s)
Capsicum/genética , Citrus sinensis/genética , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/patogenicidad , Agrobacterium tumefaciens/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transformación Genética
14.
Mol Plant Pathol ; 18(9): 1267-1281, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27647752

RESUMEN

Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.


Asunto(s)
Citrus/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad , Autofagia/fisiología , Biopelículas , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta/fisiología , Ácido Salicílico/metabolismo
15.
Front Plant Sci ; 7: 1851, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018388

RESUMEN

Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata.

16.
EMBO Rep ; 17(11): 1565-1577, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27621284

RESUMEN

Phytochromes constitute a major photoreceptor family found in plants, algae, fungi, and prokaryotes, including pathogens. Here, we report that Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease which affects cruciferous crops worldwide, codes for a functional bacteriophytochrome (XccBphP). XccBphP possesses an N-terminal PAS2-GAF-PHY photosensory domain triad and a C-terminal PAS9 domain as its output module. Our results show that illumination of Xcc, prior to plant infection, attenuates its virulence in an XccBphP-dependent manner. Moreover, in response to light, XccBphP downregulates xanthan exopolysaccharide production and biofilm formation, two known Xcc virulence factors. Furthermore, the XccbphP null mutant shows enhanced virulence, similar to that of dark-adapted Xcc cultures. Stomatal aperture regulation and callose deposition, both well-established plant defense mechanisms against bacterial pathogens, are overridden by the XccbphP strain. Additionally, an RNA-Seq analysis reveals that far-red light or XccBphP overexpression produces genomewide transcriptional changes, including the inhibition of several Xcc virulence systems. Our findings indicate that Xcc senses light through XccBphP, eliciting bacterial virulence attenuation via downregulation of bacterial virulence factors. The capacity of XccBphP to respond to light both in vitro and in vivo was abolished by a mutation on the conserved Cys13 residue. These results provide evidence for a novel bacteriophytochrome function affecting an infectious process.


Asunto(s)
Proteínas Bacterianas/genética , Fitocromo/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidad , Biopelículas/crecimiento & desarrollo , Productos Agrícolas , Regulación Bacteriana de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Luz , Mutación , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Factores de Virulencia/genética , Xanthomonas campestris/genética
17.
Mol Plant Microbe Interact ; 29(9): 688-699, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27464764

RESUMEN

Xanthan, the main exopolysaccharide (EPS) synthesized by Xanthomonas spp., contributes to bacterial stress tolerance and enhances attachment to plant surfaces by helping in biofilm formation. Therefore, xanthan is essential for successful colonization and growth in planta and has also been proposed to be involved in the promotion of pathogenesis by calcium ion chelation and, hence, in the suppression of the plant defense responses in which this cation acts as a signal. The aim of this work was to study the relationship between xanthan structure and its role as a virulence factor. We analyzed four Xanthomonas campestris pv. campestris mutants that synthesize structural variants of xanthan. We found that the lack of acetyl groups that decorate the internal mannose residues, ketal-pyruvate groups, and external mannose residues affects bacterial adhesion and biofilm architecture. In addition, the mutants that synthesized EPS without pyruvilation or without the external mannose residues did not develop disease symptoms in Arabidopsis thaliana. We also observed that the presence of the external mannose residues and, hence, pyruvilation is required for xanthan to suppress callose deposition as well as to interfere with stomatal defense. In conclusion, pyruvilation of xanthan seems to be essential for Xanthomonas campestris pv. campestris virulence.


Asunto(s)
Arabidopsis/microbiología , Biopelículas/crecimiento & desarrollo , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Polisacáridos Bacterianos/química , Xanthomonas campestris/patogenicidad , Interacciones Huésped-Patógeno , Mutación , Hojas de la Planta/microbiología , Estomas de Plantas/microbiología , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Ácido Pirúvico/química , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/fisiología
18.
J Mol Biol ; 428(19): 3702-20, 2016 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-27107635

RESUMEN

Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Transducción de Señal , Xanthomonas campestris/química , Cristalografía por Rayos X , Luz , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Espectrometría Raman , Difracción de Rayos X
19.
Environ Microbiol ; 17(11): 4164-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25346091

RESUMEN

Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Quimiotaxis/genética , Flagelos/genética , Factores de Transcripción/genética , Xanthomonas/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Citrus/microbiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Elementos Transponibles de ADN/genética , Flagelos/metabolismo , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutación/genética , Hidrolasas Diéster Fosfóricas/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/metabolismo , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Factor sigma/biosíntesis , Factor sigma/genética , Virulencia/genética , Xanthomonas/genética , Xanthomonas/patogenicidad
20.
BMC Microbiol ; 14: 86, 2014 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-24708539

RESUMEN

BACKGROUND: Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important. These Gram-negative bacterial plant pathogens are phloem-limited and vectored by citrus psyllids. The current management strategy of HLB is based on early and accurate detection of Candidatus Liberibacter asiaticus in both citrus plants and vector insects. Nowadays, real time PCR is the method of choice for this task, mainly because of its sensitivity and reliability. However, this methodology has several drawbacks, namely high equipment costs, the need for highly trained personnel, the time required to conduct the whole process, and the difficulty in carrying out the detection reactions in field conditions. RESULTS: A recent DNA amplification technique known as Loop Mediated Isothermal Amplification (LAMP) was adapted for the detection of Candidatus Liberibacter asiaticus. This methodology was combined with a Lateral Flow Dipstick (LFD) device for visual detection of the resulting amplicons, eliminating the need for gel electrophoresis. The assay was highly specific for the targeted bacterium. No cross-reaction was observed with DNA from any of the other phytopathogenic bacteria or fungi assayed. By serially diluting purified DNA from an infected plant, the sensitivity of the assay was found to be 10 picograms. This sensitivity level was proven to be similar to the values obtained running a real time PCR in parallel. This methodology was able to detect Candidatus Liberibacter asiaticus from different kinds of samples including infected citrus plants and psyllids. CONCLUSIONS: Our results indicate that the methodology here reported constitutes a step forward in the development of new tools for the management, control and eradication of this destructive citrus disease. This system constitutes a potentially field-capable approach for the detection of the most relevant HLB-associated bacteria in plant material and psyllid vectors.


Asunto(s)
Técnicas Bacteriológicas/métodos , Cromatografía/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Rhizobiaceae/aislamiento & purificación , Animales , Citrus/microbiología , Hemípteros/microbiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA