Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Dalton Trans ; 52(21): 7249-7257, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37166123

RESUMEN

Macroscopic scale hollow microcrystals are a promising group of materials for gas and liquid uptake as well as sensing. In this contribution we describe the structure of hollow hexagonal cross-section crystals formulated as salts of a silicon catecholate anion and a tetramethylenediamine (TEMED) cation. Using a combination of X-ray single crystal diffraction, Raman spectroscopy and quantum chemistry we explore the structural properties of the hollow microcrystals. With the X-ray structural data as a starting point and assisted with quantum chemistry we compute Raman tensors to fit polarisation sensitive spectral responses and predict the orientation and packing of unit cells in respect to the long and short axis of the synthesised microcrystals. Using these newly developed methods for predicting molecular Raman responses in space with dependence on local orientation, we present the quantitative analysis of experimental Raman images of both hexagonal and tetragonal cross section hollow microcrystals formed from silicon catecholate anions using different amines as counterions. We describe the distributions of chemical components at the surfaces and edges of microcrystals, address the effect of catcholate hydrophobicity on water uptake and discuss possible strategies in chemical and post-assembly modifications to widen the functional properties of this group of environmentally friendly silicon organic framework (SOF) materials.

2.
RSC Adv ; 13(2): 1381-1391, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686955

RESUMEN

We use Raman microscopy to describe the structure and chemical composition of both conidiophore and hyphae of Botrytis cinerea, a common plant pathogen. To interpret experimental data, we use density functional theory (DFT) to compute Raman tensors specific to an important fungal glycopeptide, a segment of α-chitin, and several naphthalene-based precursors of increasing complexity, which we propose play a role in the melanin synthesis pathway. Using spectral interpretations based on quantum chemical validation, we review microscopy images reconstructed for specific Raman activities and describe differences in distributions of structural components, photo-protective secondary naphthalene-based pigments, and proteins in both spores and hyphal filaments. Comparison of our results with literature data on other fungi suggests an example of convergent evolution expressed at the level of secondary metabolites specific to plant pathogenic fungi. Our results indicate that pre-resonant Raman monitoring of melanin precursors may help assessment of local Botrytis population biology to aid agricultural production.

3.
Phys Chem Chem Phys ; 24(48): 29712-29720, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453703

RESUMEN

We conduct quantum studies of adsorption of diazine heterocycles on graphene to discuss experimental thermodynamics of gas-phase adsorption of pyridazine, pyrimidine and pyrazine on graphitized thermal carbon black, as reported previously. Using Born-Oppenheimer molecular dynamics and density functional studies, we characterize structural and electronic tendencies of the heterocycles on graphene. The theoretical studies predict the adsorption of pyridazine, pyrazine and pyrimidine to cause electronic perturbations of dipole, quadrupole and mixed spatial characters, respectively, resulting in a red shift of the electronic components of the heterocycles to modulate graphene electronics upon admixing of diazine orbital components with the πz states of the substrate. Investigating the thermodynamics of adsorption further involves calculating Henry's constant with the expression of the uniform surface limit: using experimental data, we estimate binding energies and force derivatives with respect to the surface normal. The extracted association energies agree with the results of Lennard-Jones potential calculations. Together, the reported pyridazine anomalous retention required the association force constant to be lower compared with values for the other diazines. Exploring energies of intermolecular relations, we ascribe the pyridazine anomalous retention to possibility of the formation of pyridazine dimers: when on the surface, only for pyridazine, the computed benefit of pairing is larger than the energy of molecular association with graphene.

4.
Molecules ; 27(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144582

RESUMEN

Complexes of Cu2+(d9) with proline may be considered a simple model to address the structural flexibility and electronic properties of copper metalloproteins. To discuss optical electronic spectra and infrared spectral responses, we use quantum chemistry applied to model systems prepared under different geometries and degree of hydration. A comparison of experimental data with calculations indicates that first explicit neighbor water clustering next to the Cu2+(d9) complex is critical for a correct description of the electronic properties of this system. We deduce that the moderately hydrated trans conformer is the main structural form of the complex in water. Further, we suggest that the antisymmetric stretching mode of the carbonyl moieties of the conformer is dominant in the spectrally broadened infrared resonance at 1605 cm-1, where inhomogeneity of the transition at the blue side can be ascribed to a continuum of less optimal interactions with the solvent. Extracted structural properties and hydration features provide information on the structural flexibility/plasticity specific to Cu2+(d9) systems in correlation with the electronic behavior upon photoexcitation. We discuss the role and the nature of the axial ligand in bio-copper structural ambivalence and reactivity.


Asunto(s)
Cobre , Metaloproteínas , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Prolina , Solventes , Agua
5.
Phys Chem Chem Phys ; 23(33): 18001-18011, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34382985

RESUMEN

A hydrophobic heptapeptide, with sequence AFILPTG, as part of a phage capsid protein binds effectively to silica particles carrying negative charge. Here, we explore the silica binding activity of the sequence as a short polypeptide with polar N and C terminals. To describe the structural changes that occur on binding, we fit experimental infrared, Raman and circular dichroism data for a number of structures simulated in the full configuration space of the hepta-peptide using replica exchange molecular dynamics. Quantum chemistry was used to compute normal modes of infrared and Raman spectra and establish a relationship to structures from MD data. To interpret the circular dichroism data, instead of empirical factoring of optical activity into helical/sheet/random components, we exploit natural transition orbital theory and specify the contributions of backbone amide units, side chain functional groups, water, sodium ions and silica to the observed transitions. Computed optical responses suggest a less folded backbone and importance of the N-terminal when close to silica. We further discuss the thermodynamics of the interplay of charged and hydrophobic moieties of the polypeptide on association with the silica surface. The outcomes of this study may assist in the engineering of novel artificial bio-silica heterostructures.


Asunto(s)
Oligopéptidos/química , Dióxido de Silicio/química , Teoría Funcional de la Densidad , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Desplegamiento Proteico , Dióxido de Silicio/síntesis química , Propiedades de Superficie
6.
Chem Sci ; 13(1): 133-140, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059161

RESUMEN

We report how Raman difference imaging provides insight on cellular biochemistry in vivo as a function of sub-cellular dimensions and the cellular environment. We show that this approach offers a sensitive diagnostic to address blood biochemistry at the cellular level. We examine Raman microscopic images of the distribution of the different hemoglobins in both healthy (discocyte) and unhealthy (echinocyte) blood cells and interpret these images using pre-calculated, accurate pre-resonant Raman tensors for scattering intensities specific to hemoglobins. These tensors are developed from theoretical calculations of models of the oxy, deoxy and met forms of heme benchmarked against the experimental visible spectra of the corresponding hemoglobins. The calculations also enable assignments of the electronic transitions responsible for the colour of blood: these are mainly ligand to metal charge transfer transitions.

7.
Nat Commun ; 11(1): 4908, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999290

RESUMEN

Preparation and characterization of polariton Bose-Einstein condensates in micro-cavities of high quality are at the frontier of contemporary solid state physics. Here, we report on three-dimensional polariton condensation and confinement in pseudo-spherical ZnO microcrystals. The boundary of micro-spherical ZnO resembles a stable cavity that enables sufficient coupling of radiation with material response. Exciting under tight focusing at the low frequency side of the bandgap, we detect efficiency and spectral nonlinear dependencies, as well as signatures of spatial delocalization of the excited states which are characteristics of dynamics in polariton droplets. Expansion of the photon component of the condensate boosts the leaky field beyond the boundary of the ZnO microcrystals. Using this, we observe surface polariton field enhanced Raman responses at the interface of ZnO microspheres. The results demonstrate how readily available spherical semiconductor microstructures facilitate engineering of polariton based electronic states and sensing elements for diagnostics at interfaces.

8.
Front Plant Sci ; 10: 210, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891051

RESUMEN

Equisetum species are primitive vascular plants that benefit from the biogenesis of silica bio-organic inclusions in their tissues and participate in the annual biosilica turnover in local eco-systems. As means of Equisetum reproduction and propagation, spores are expected to reflect the evolutionary adaptation of the plants to the climatic conditions at different times of the year. Combining methods of Raman and scanning electron microscopy and assisted with density functional theory, we conducted material spatial-spectral correlations to characterize the distribution of biopolymers and silica based structural elements that contribute to the bio-mineral content of the elater. The elater tip has underlying skeletal-like structural elements where cellulose fibers provide strength and flexibility, both of which are necessary for locomotion. The surface of the elater tips is rich with less ordered pectin like polysaccharide and shows a ridged, folded character. At the surface we observe silica of amorphous, colloidal form in nearly spherical structures where the silica is only a few layers thick. We propose the observed expansion of elater tips upon germination and the form of silica including encapsulated biopolymers are designed for ready dispersion, release of the polysaccharide-arginine rich content and to facilitate silica uptake to the developing plant. This behavior would help to condition local soil chemistry to facilitate competitive rooting potential and stem propagation.

9.
Phys Chem Chem Phys ; 21(8): 4663-4672, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30747204

RESUMEN

Polypeptide based biosilica composites show promise as next generation multi-functional nano-platforms for diagnostics and bio-catalytic applications. Following the identification of a strong silica binder (LDHSLHS) by phage display, we conduct structural analysis of the polypeptide at the interface with amorphous silica nanoparticles in an aqueous environment. Our approach relies on modelling infrared and Raman spectral responses using predictions of molecular dynamics simulations and quantum studies of the normal modes for several potential structures. By simultaneously fitting both infrared and Raman responses in the amide spectral region, we show that the main structural conformer has a beta-like central region and helix-twisted terminals. Classical simulations, as conducted previously (Chem. Mater., 2014, 26, 5725), predict that the association of the main structure with the interface is stimulated by electrostatic interactions though surface binding also requires spatially distributed sodium ions to compensate for negatively charged acidic silanol groups. Accordingly, diffusion of sodium ions would contribute to a stochastic character of the peptide association with the surface. Consistent with the described dynamics at the interface, the results obtained from isothermal titration calorimetry (ITC) confirm a significant enhancement of polypeptide binding to silica at higher concentrations of Na+. The results of this study suggest that the tertiary structure of a phage capsid protein plays a significant role in regulating the conformation of peptide LDHSLHS, increasing its binding to silica during the phage display process. The results presented here support design-led engineering of polypeptide-silica nanocomposites for bio-technological applications.


Asunto(s)
Péptidos/química , Dióxido de Silicio/química , Sitios de Unión , Técnicas de Visualización de Superficie Celular , Simulación de Dinámica Molecular , Nanopartículas/química , Tamaño de la Partícula , Unión Proteica , Sodio/química , Electricidad Estática , Relación Estructura-Actividad , Propiedades de Superficie , Termodinámica , Agua/química
10.
Phys Chem Chem Phys ; 21(3): 1344-1353, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30575829

RESUMEN

A diversity of photo-switching structural elements opens up new opportunities in the engineering of light driven reshaping of matter, in catalysis on-click including photodynamic cancer therapy, in light sensitive transport control and in data storage. With the assistance of quantum calculations we explore the photo-physical properties of novel 3,3'-azothiophene molecular systems, the synthesis of which we reported recently. In the considered azothiophenes, upon exposure to ultraviolet and visible radiation, we observed effective anti(trans) to syn(cis) and syn(cis) to anti(trans) isomerization of the -N[double bond, length as m-dash]N- moiety, respectively. In contrast to azobenzene based photo-switchable molecular systems, the syn(cis) to anti(trans) isomerization in the azothiophenes studied does not take place at 22 °C in the dark. Temperature dependent experiments and theoretical studies suggest a slightly higher barrier for such processes than for azobenzene, which we attribute to the specific structural and electronic properties of the thiophene ring and the nature of the side groups. We discuss the potential of the observed properties in the development of novel molecular photo-switching machinery to promote biocatalytic applications at interfaces.

11.
J Phys Chem A ; 122(22): 4997-5003, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29738240

RESUMEN

Structural properties of bioinorganic composites are of current interest in the areas of drug delivery, bone repair, and biomimetics. In such composite systems, structural analysis is enhanced when we combine methods of spectroscopy and simulation. Depending on size and shape, structural discontinuities of inorganic matter may modulate the optical response of a bound molecule. Using density functional theory, we explore the effects of a local field next to the surface of a silica cluster on frequencies of methyl stretching modes of associated methanols. Computation results predict that the electrostatic potential modulated by structural discontinuities of silica should not contribute to any systematic frequency shifts for normal modes of a guest molecule. Regardless of position, the methyl stretching modes of methanol demonstrate sensitivity only to the local chemistry of bonding with silanols, which may lead either to a low or high frequency shift for vibrations. In support, experimental studies of deuterated methanol at impurity levels in water show uniform broadening of resonances of carbon-deuterium stretching modes in the presence of both crystalline and amorphous silica nanoparticles. The significance of these findings is that the spectral responses of guest molecules on such surfaces should not be subject to bias introduced by edge effects.

12.
Phys Chem Chem Phys ; 13(23): 11351-8, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21573300

RESUMEN

The linear and two-dimensional infrared (2DIR) responses of the amide I vibrational mode in liquid formamide are investigated experimentally and theoretically using molecular dynamics simulations. The recent method based on the numerical integration of the Schrödinger equation is employed to calculate the 2DIR spectra. Special attention is devoted to the interplay of the structural dynamics and the excitonic nature of the amide I modes in determining the optical response of the studied system. In particular, combining experimental data, simulated spectra and analysis of the simulated atomic trajectory in terms of a transition dipole coupling model, we provide a convincing explanation of the peculiar features of the 2DIR spectra, which show a substantial increase of the antidiagonal bandwidth with increasing frequency. We point out that, at variance with liquid water, the 2DIR spectral profile of formamide is determined more by the excitonic nature of the vibrational states than by the fast structural dynamics responsible for the frequency fluctuations.

13.
J Phys Chem B ; 115(18): 5294-303, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21443231

RESUMEN

The association of peptides to phospholipid membranes through the insertion of an anchoring hydrocarbon tail is common to some viruses and to several anticancer drugs. We investigate the association of an anchor dipeptide, N-myristoylated methyl glycine (MrG), to phospholipid membrane fragments made of 1-palmitoyl-2-linoleyl phosphatidylcholine (PLPC). Here we report on the experimental findings of two-dimensional infrared spectroscopy of an MrG backbone in the 6 µm wavelength region. The experimental outcomes are supported by ab initio calculations and by a molecular dynamics simulation accomplished with the replica exchange method. We find that the guest molecule has a preferential unfolded conformation, with dihedral angles Φ = -90 ± 20° and Ψ = -180 ± 20°, while the average orientational distribution of the amide I transition dipole moments with respect to the neighbor PLPC carbonyls is peaked at angles in the range 21-33°. The depth of penetration of MrG inside the membrane corresponds rather well to the one estimated in our previous paper [J. Phys. Chem. B, 2009, 113, 16246], where we found that the backbone moieties of MrG are localized slightly above the carbonyl groups of PLPC. According to the simulation results, the anchor tail is completely inserted in the hydrophobic region of the bilayer, with a largely prevalent extended conformation and a preferential alignment along the average direction of the PLPC hydrocarbon tails.


Asunto(s)
Dipéptidos/química , Glicina/análogos & derivados , Membrana Dobles de Lípidos/química , Glicina/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Pliegue de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Phys Chem B ; 113(50): 16246-50, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19924839

RESUMEN

We explore the localization of a guest N-myristoylated methyl glycine anchor dipeptide in a phospholipid environment. The dipeptide is part of a conservative sequence, which ensures proper association of a wide group of proteins in living organisms with a cellular phospholipid membrane. Using linear and two-color anharmonic infrared spectroscopy, we measure relative degrees of hydration of the amide I modes of the dipeptide and of phospholipid carbonyls. The atomic density of water in dependence of the distance from the hydrophobic center of the bilayer (a result of an independent Neutron scattering experiment) allows us to determine the relative altitudes of the peptide carbonyls with respect to those of the phospholipid ones. Considering this, and the dimensions of the dipeptide molecular frame, we anticipate the average angle between the backbone of the dipeptide and the normal to the membrane surface. The results provide a descriptive picture of the depth and geometry of partitioning of a guest N-myristoylated methyl glycine anchor dipeptide into a phospholipid membrane.


Asunto(s)
Dipéptidos/química , Fosfolípidos/química , Membrana Dobles de Lípidos/química , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Chem Phys ; 130(20): 204518, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19485468

RESUMEN

Vibrational dynamics of liquid formamide is studied in the spectral region of the amide I mode by means of linear and two-dimensional infrared spectroscopies. The two-dimensional spectrum has a complex structure to be connected to the partially excitonic nature of the vibrational states. The measurements performed on a 1:10 (12)C:(13)C formamide isotopic mixture allow separating the broadening contribution due to the inhomogeneous frequency distribution of the local oscillators from that of excitonic origin. A model based on the Kubo picture of the line broadening is used, together with the dynamic information obtained from a molecular dynamics simulation, to fit the spectra of the (12)C formamide impurity in the isotopic mixture. The relevant dynamical information, such as the amplitude of the frequency fluctuations, lifetime of the second vibrational excited state, and anharmonicity, is thus recovered. By appropriately combining the outcomes of experiments and molecular dynamics simulation, we demonstrate that motional narrowing determines the line shape of the amide I resonance to a large extent. The same analysis provides an estimate of the transition dipole moment of formamide, which results in good agreement with an ab initio calculation. The calculated frequency fluctuation correlation time is found to be comparable to the hydrogen-bond lifetime, which defines the basic structural relaxation rate of the networked liquid.


Asunto(s)
Formamidas/química , Rayos Infrarrojos , Modelos Químicos , Termodinámica , Amidas/química , Biología Computacional , Simulación por Computador , Espectrofotometría Infrarroja , Electricidad Estática , Vibración
16.
J Phys Chem B ; 113(13): 4119-24, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19228033

RESUMEN

We explore the two-dimensional infrared response of D(2)O and of OD impurity at the interface of phospholipid membrane fragments. The spectra of the two aqueous states are inhomogeneously broadened due to the absorption of water molecule associated with the membrane interface in different structural sites. The nonlinear spectra of the two species allow disentangling of the spectral contributions of the aqueous states of two types: where the stretching modes are under effective mixing and where the stretching modes are uncoupled. By reviewing the results of the experimental studies with the support of molecular dynamic simulation we identify the spectral signatures of the main structural motives responsible for the inhomogeneous distribution of resonances in the infrared OD stretching region. Our analysis provides a quantitative estimate of the statistical population of the different aqueous species at the polar interface of the bilayer.


Asunto(s)
Fosfolípidos/química , Agua/química , Modelos Moleculares , Conformación Molecular , Análisis Espectral
17.
J Comput Chem ; 29(9): 1507-16, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18270965

RESUMEN

We have developed a fitting algorithm able to extract spectral and dynamic properties of a three level oscillator from a two-dimensional infrared spectrum (2D-IR) detected in time resolved nonlinear experiments. Such properties go from the frequencies of the ground-to-first and first-to-second vibrational transitions (and hence anharmonicity) to the frequency-fluctuation correlation function. This last is represented through a general expression that allows one to approach the various strategies of modeling proposed in the literature. The model is based on the Kubo picture of stochastic fluctuations of the transition frequency as a result of perturbations by a fluctuating surrounding. To account for the line-shape broadening due to pump pulse spectral width in double-resonance measurements, we supply the fitting algorithm with the option to perform the convolution of the spectral signal with a Lorentzian function in the pump-frequency dimension. The algorithm is tested here on 2D-IR pump-probe spectra of a Gly-Ala dipeptide recorded at various pump-probe delay times. Speedup benchmarks have been performed on a small Beowulf cluster. The program is written in FORTRAN language for both serial and parallel architectures and is available free of charge to the interested reader.


Asunto(s)
Algoritmos , Dipéptidos/química , Simulación por Computador , Teoría Cuántica , Programas Informáticos , Espectrofotometría Infrarroja/métodos , Procesos Estocásticos , Factores de Tiempo , Vibración
18.
Phys Rev Lett ; 99(7): 078302, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17930929

RESUMEN

The physics of confined water has stimulated extensive research in recent years, in particular, regarding the role of hydrogen bonding as a significant factor in the observed dynamics. In this work, two-dimensional infrared spectroscopy was employed to investigate the response of the OH moiety of water in phospholipid membrane samples. The results show strong evidence for three distinct hydrogen bonding motifs (H2O with zero, one, or both OH moieties hydrogen bonded), whose relative proportions at the membrane interface are estimated.


Asunto(s)
Membranas/química , Fosfolípidos/química , Agua/química , Enlace de Hidrógeno , Modelos Moleculares , Espectrofotometría Infrarroja
19.
J Phys Chem B ; 111(6): 1377-83, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17249718

RESUMEN

Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe frequency. Also, the lifetime increases when the water content of the sample is lowered. The measured lifetimes range between 903 and 390 fs. A long-lived spectral feature grows in following the excitation and is attributed to photoinduced D-bond breaking. The photoproduct spectrum differs from the steady state difference Fourier transform infrared (FTIR) spectrum, showing that the full thermalization of the excitation energy happens on a much longer time scale than the time interval considered (12 ps). Further evidence of the inhomogeneous character of the water residing in the polar region of the bilayer comes from the spectral anisotropy. The water molecules absorbing on the low frequency side of the absorption band show no decay at all of the anisotropy, while an ultrafast partial decay appears when the high frequency side of the spectrum is probed. The overall behavior differs remarkably from that observed with similar experiments in bulk water and in water segregated in inverse micelles. In weakly hydrated phospholipid membranes, water molecules are present mostly as isolated species, prevalently involved in strong, rigid, and persistent hydrogen bonds with the polar groups of the bilayer molecules. This specific character appears to have a direct effect on the structural stability and thermal properties of the membrane.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Agua/química , Absorción , Óxido de Deuterio/química , Enlace de Hidrógeno , Fluidez de la Membrana , Micelas , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo
20.
J Am Chem Soc ; 128(29): 9466-71, 2006 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16848484

RESUMEN

We combine two-color ultrafast infrared spectroscopy and molecular dynamics simulation to investigate the hydration of carbonyl moieties in a dimyristoyl-phosphatidylcholine bilayer. Excitation with femtosecond infrared pulses of the OD stretching mode of heavy water produces a time dependent change of the absorption band of the phospholipid carbonyl groups. This intermolecular vibrational coupling affects the entire C=O band, thus suggesting that the optical inhomogeneity of the infrared response of carbonyl in phospholipid membranes cannot be attributed to the variance in hydration. Both the experimental and the theoretical results demonstrate that sn-1 carbonyl has a higher propensity to form hydrogen bonds with water in comparison to sn-2. The time-resolved experiment allows following the evolution of the system from a nonequilibrium localization of energy in the OD stretching mode to a thermally equilibrated condition and provides the characteristic time constants of the process. The approach opens a new opportunity for investigation of intermolecular structural relations in complex systems, like membranes, polymers, proteins, and glasses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA