Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Microbiol ; 9(7): 1792-1811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862602

RESUMEN

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.


Asunto(s)
Klebsiella oxytoca , Infecciones por Salmonella , Salmonella typhimurium , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Animales , Ratones , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Enterotoxinas/metabolismo , Enterotoxinas/genética , Femenino , Ratones Endogámicos C57BL , Infecciones por Klebsiella/microbiología , Microbiota , Microbioma Gastrointestinal , Antibiosis , Benzodiazepinonas
2.
Mol Metab ; 85: 101956, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735390

RESUMEN

OBJECTIVE: Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic ß-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. METHODS: Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. RESULTS: SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. CONCLUSIONS: Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.


Asunto(s)
Adipocitos , Hipoglucemiantes , PPAR gamma , Compuestos de Sulfonilurea , PPAR gamma/metabolismo , Animales , Fosforilación , Hipoglucemiantes/farmacología , Ratones , Compuestos de Sulfonilurea/farmacología , Humanos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Masculino , Serina/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Células Cultivadas , Resistencia a la Insulina
3.
Angew Chem Int Ed Engl ; 61(52): e202212946, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36208117

RESUMEN

During our search for novel myxobacterial natural products, we discovered the thiamyxins: thiazole- and thiazoline-rich non-ribosomal peptide-polyketide hybrids with potent antiviral activity. We isolated four congeners of this unprecedented natural product family with the non-cyclized thiamyxin D fused to a glycerol unit at the C-terminus. Alongside their structure elucidation, we present a concise biosynthesis model based on biosynthetic gene cluster analysis and isotopically labelled precursor feeding. We report incorporation of a 2-(hydroxymethyl)-4-methylpent-3-enoic acid moiety by a GCN5-related N-acetyltransferase-like decarboxylase domain featuring polyketide synthase. The thiamyxins show potent inhibition of RNA viruses in cell culture models of corona, zika and dengue virus infection. Their potency up to a half maximal inhibitory concentration of 560 nM combined with milder cytotoxic effects on human cell lines indicate the potential for further development of the thiamyxins.


Asunto(s)
Myxococcales , Policétidos , Infección por el Virus Zika , Virus Zika , Humanos , Myxococcales/metabolismo , ARN , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Infección por el Virus Zika/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA