Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125806

RESUMEN

Cytochrome c (CytC), a one-electron carrier, transfers electrons from complex bc1 to cytochrome c oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex bc1 and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation. All mutants showed a 4-6 times increased peroxidase activity and accelerated binding of cyanide to the ferric heme of CytC. In contrast, decomposition of the cyanide complex with ferrous CytC, as monitored by magnetic circular dichroism spectroscopy, was slower in mutants compared to WT. Molecular dynamic simulations revealed the increase in the fluctuations of Cα atoms of individual residues of mutant CytC compared to WT, especially in the Ω-loop (70-85), which can cause destabilization of the Fe…S(Met80) coordination link, facilitation of the binding of exogenous ligands cyanide and peroxide, and an increase in peroxidase activity. It was found that only one substitution K72E is enough to induce all these changes, indicating the significance of K72 and the Ω-loop (70-85) for the structure and physiology of mitochondrial CytC. In this work, we also propose using a ferro-ferricyanide buffer as a substrate to monitor the peroxidase activity of CytC. This new approach allows us to determine the rate of peroxidase activity at moderate (200 µM) concentrations of H2O2 and avoid complications of radical formation during the reaction.


Asunto(s)
Citocromos c , Simulación de Dinámica Molecular , Sitios de Unión , Ligandos , Citocromos c/metabolismo , Citocromos c/química , Citocromos c/genética , Peroxidasa/metabolismo , Peroxidasa/química , Peroxidasa/genética , Sustitución de Aminoácidos , Unión Proteica , Cianuros/metabolismo , Cianuros/química , Animales , Hemo/metabolismo , Hemo/química , Mutación
2.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759538

RESUMEN

Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.


Asunto(s)
Citocromos c , Superóxidos , Citocromos c/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones , Mutación/genética , Caballos , Animales
3.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047401

RESUMEN

The review focuses on recent advances regarding the effects of natural and artificial amphipathic compounds on terminal oxidases. Terminal oxidases are fascinating biomolecular devices which couple the oxidation of respiratory substrates with generation of a proton motive force used by the cell for ATP production and other needs. The role of endogenous lipids in the enzyme structure and function is highlighted. The main regularities of the interaction between the most popular detergents and terminal oxidases of various types are described. A hypothesis about the physiological regulation of mitochondrial-type enzymes by lipid-soluble ligands is considered.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxidorreductasas , Oxidorreductasas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Oxidación-Reducción
4.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835528

RESUMEN

The Bile Acid Binding Site (BABS) of cytochrome oxidase (CcO) binds numerous amphipathic ligands. To determine which of the BABS-lining residues are critical for interaction, we used the peptide P4 and its derivatives A1-A4. P4 is composed of two flexibly bound modified α-helices from the M1 protein of the influenza virus, each containing a cholesterol-recognizing CRAC motif. The effect of the peptides on the activity of CcO was studied in solution and in membranes. The secondary structure of the peptides was examined by molecular dynamics, circular dichroism spectroscopy, and testing the ability to form membrane pores. P4 was found to suppress the oxidase but not the peroxidase activity of solubilized CcO. The Ki(app) is linearly dependent on the dodecyl-maltoside (DM) concentration, indicating that DM and P4 compete in a 1:1 ratio. The true Ki is 3 µM. The deoxycholate-induced increase in Ki(app) points to a competition between P4 and deoxycholate. A1 and A4 inhibit solubilized CcO with Ki(app)~20 µM at 1 mM DM. A2 and A3 hardly inhibit CcO either in solution or in membranes. The mitochondrial membrane-bound CcO retains sensitivity to P4 and A4 but acquires resistance to A1. We associate the inhibitory effect of P4 with its binding to BABS and dysfunction of the proton channel K. Trp residue is critical for inhibition. The resistance of the membrane-bound enzyme to inhibition may be due to the disordered secondary structure of the inhibitory peptide.


Asunto(s)
Complejo IV de Transporte de Electrones , Orthomyxoviridae , Complejo IV de Transporte de Electrones/metabolismo , Péptidos/metabolismo , Estructura Secundaria de Proteína , Ácido Desoxicólico , Orthomyxoviridae/metabolismo
5.
Biochim Biophys Acta Bioenerg ; 1864(2): 148937, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403793

RESUMEN

Bovine cytochrome c oxidase (CcO) contains two hemes, a and a3, chemically identical but differing in coordination and spin state. The Soret absorption band of reduced aa3-type cytochrome c oxidase consists of overlapping bands of the hemes a2+ and a32+. It shows a peak at ∼444 nm and a distinct shoulder at ∼425 nm. However, attribution of individual spectral lineshapes to hemes a2+ and a32+ in the Soret is controversial. In the present work, we characterized spectral contributions of hemes a2+ and a32+ using two approaches. First, we reconstructed bovine CcO heme a2+ spectrum using a selective Ca2+-induced spectral shift of the heme a2+. Second, we investigated photobleaching of the reduced Thermus thermophilus ba3- and bovine aa3-oxidases in the Soret induced by femtosecond laser pulses in the Q-band. The resolved spectra show splitting of the electronic B0x-, B0y-transitions of both reduced hemes. The heme a2+ spectrum is shifted to the red relative to heme a32+ spectrum. The ∼425 nm shoulder is mostly attributed to heme a32+.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxidorreductasas , Bovinos , Animales , Complejo IV de Transporte de Electrones/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Hemo/metabolismo
6.
Cells ; 11(5)2022 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-35269529

RESUMEN

Thyroid hormones regulate tissue metabolism to establish an energy balance in the cell, in particular, by affecting oxidative phosphorylation. Their long-term impact is mainly associated with changes in gene expression, while the short-term effects may differ in their mechanisms. Our work was devoted to studying the short-term effects of hormones T2, T3 and T4 on mitochondrial cytochrome c oxidase (CcO) mediated by direct contact with the enzyme. The data obtained indicate the existence of two separate sites of CcO interaction with thyroid hormones, differing in their location, affinity and specificity to hormone binding. First, we show that T3 and T4 but not T2 inhibit the oxidase activity of CcO in solution and on membrane preparations with Ki ≈ 100-200 µM. In solution, T3 and T4 compete in a 1:1 ratio with the detergent dodecyl-maltoside to bind to the enzyme. The peroxidase and catalase partial activities of CcO are not sensitive to hormones, but electron transfer from heme a to the oxidized binuclear center is affected. We believe that T3 and T4 could be ligands of the bile acid-binding site found in the 3D structure of CcO by Ferguson-Miller's group, and hormone-induced inhibition is associated with dysfunction of the K-proton channel. A possible role of this interaction in the physiological regulation of the enzyme is discussed. Second, we find that T2, T3, and T4 inhibit superoxide generation by oxidized CcO in the presence of excess H2O2. Inhibition is characterized by Ki values of 0.3-5 µM and apparently affects the formation of O2●- at the protein surface. The second binding site for thyroid hormones presumably coincides with the point of tight T2 binding on the Va subunit described in the literature.


Asunto(s)
Complejo IV de Transporte de Electrones , Peróxido de Hidrógeno , Sitios de Unión , Transporte de Electrón , Complejo IV de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/metabolismo , Hormonas Tiroideas/metabolismo
7.
Biochemistry (Mosc) ; 86(1): 44-58, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33705281

RESUMEN

It is known that Triton X-100 (TX) reversibly inhibits activity of cytochrome c oxidase (CcO). The mechanism of inhibition is analyzed in this work. The action of TX is not directed to the reaction of CcO with cytochrome c, does not cause transition of the enzyme to the "slow" form, and is not associated with monomerization of the enzyme complex. TX completely suppresses oxygen reduction by CcO, but inhibition is prevented and partially reversed by dodecyl-ß-D-maltoside (DDM), a detergent used to maintain CcO in solution. A 1/1 stoichiometry competition is shown between DDM and TX for binding to CcO, with Ki = 0.3 mM and affinity of DDM for the enzyme of 1.2 mM. TX interaction with the oxidized enzyme induces spectral response with maximum at 421 nm and [TX]1/2 = 0.28 mM, presumably associated with heme a3. When CcO interacts with excess of H2O2 TX affects equilibrium of the oxygen intermediates of the catalytic center accelerating the FI-607 → FII-580 transition, inhibits generation of O2·- by the enzyme, and, to a lesser extent, suppresses the catalase partial activity. The observed effects can be explained by inhibition of the conversion of the intermediate FII-580 to the free oxidized state during the catalytic cycle. TX suppresses intraprotein electron transfer between hemes a and a3 during enzyme turnover. Partial peroxidase activity of CcO remains relatively resistant to TX under conditions that block oxidase reaction effectively. These features indicate an impairment of the K proton channel conductivity. We suggest that TX interacts with CcO at the Bile Acid Binding Site (BABS) that is located on the subunit I at the K-channel mouth and contacts with amphipathic regulators of CcO [Buhrow et al. (2013) Biochemistry, 52, 6995-7006]. Apparently, TX mimics the physiological ligand of BABS, whereas the DDM molecule mimics an endogenous phospholipid bound at the edge of BABS that controls effective affinity for the ligand.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Octoxinol/farmacología , Animales , Bovinos , Transporte de Electrón , Complejo IV de Transporte de Electrones/metabolismo , Cinética , Ligandos , Mitocondrias Cardíacas/enzimología
8.
Cells ; 9(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003582

RESUMEN

Estradiol, testosterone and other steroid hormones inhibit cytochrome c oxidase (CcO) purified from bovine heart. The inhibition is strongly dependent on concentration of dodecyl-maltoside (DM) in the assay. The plots of Ki vs [DM] are linear for both estradiol and testosterone which may indicate an 1:1 stoichiometry competition between the hormones and the detergent. Binding of estradiol, but not of testosterone, brings about spectral shift of the oxidized CcO consistent with an effect on heme a33+. We presume that the hormones bind to CcO at the bile acid binding site described by Ferguson-Miller and collaborators. Estradiol is shown to inhibit intraprotein electron transfer between hemes a and a3. Notably, neither estradiol nor testosterone suppresses the peroxidase activity of CcO. Such a specific mode of action indicates that inhibition of CcO activity by the hormones is associated with impairing proton transfer via the K-proton channel.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hemo/química , Animales , Bovinos , Cianuros/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Estradiol/metabolismo , Glucósidos/química , Hemo/metabolismo , Cinética , Oxidación-Reducción , Testosterona/metabolismo
9.
Biochimie ; 149: 71-78, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29635042

RESUMEN

Subunit I of cytochrome c oxidase (CcO) from mitochondria and many bacteria contains a cation binding site (CBS) located at the outer positively charged aqueous phase not far from heme a. Binding of Ca2+ with the CBS in bovine CcO inhibits activity of the enzyme 2-3 -fold [Vygodina, T., Kirichenko, A. & Konstantinov A.A. (2013) Direct Regulation of Cytochrome c Oxidase by Calcium Ions, PLoS One.8 e74436]. Here we show that binding of Ca2+ at CBS of bovine CcO shifts Em of heme a to the positive by 15-20 mV. Na+ ions that bind to the same site and compete with Ca2+ do not affect Em of heme a and also prevent and reverse the effect of Ca2+. No effect of Ca2+ or EGTA is observed on Em of heme a with the wild type bacterial oxidases from R.sphaeroides or P.denitrificans that contain tightly-bound calcium at the site. In the D477A mutant CcO from P. denitrificans that binds Ca2+ reversibly like the mitochondrial CcO, calcium shifts redox titration curve of heme a to the positive by ∼35-50 mV that is in good agreement with the results of electrostatic calculations; however, as shown earlier, it does not inhibit CcO activity of the mutant enzyme. Therefore the data do not support the proposal that the inhibitory effect of Ca2+ on CcO activity may be explained by the Ca2+-induced shift of Em of heme a. Rather, Ca2+ retards electron transfer by inhibition of charge dislocation in the exit part of the proton channel H in mammalian CcO, that is absent in the bacterial oxidases.


Asunto(s)
Calcio/química , Complejo IV de Transporte de Electrones/química , Hemo/análogos & derivados , Mitocondrias/química , Animales , Bacterias/enzimología , Sitios de Unión , Cationes/química , Bovinos , Transporte de Electrón , Hemo/química , Cinética , Mitocondrias/enzimología , Oxidación-Reducción
10.
Biochim Biophys Acta Bioenerg ; 1858(12): 982-990, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28866381

RESUMEN

Cytochrome c oxidase (CcO) from mammalian mitochondria binds Ca2+ and Na+ in a special cation binding site. Binding of Ca2+ brings about partial inhibition of the enzyme while Na+ competes with Ca2+ for the binding site and protects the enzyme from the inhibition [Vygodina, T., Kirichenko, A. and Konstantinov, A.A. (2013). Direct Regulation of Cytochrome c oxidase by Calcium Ions. PLoS One 8(9): e74436]. In the original studies, the inhibition was found to depend significantly on the ionic composition of the buffer. Here we describe inhibition of CcO by Ca2+ in media containing the main ionic components of cytoplasm (150mM KCl, 12mM NaCl and 1mM MgCl2). Under these conditions, Ca2+ inhibits CcO with effective Ki of 20-26µM, that is an order of magnitude higher than determined earlier in the absence of Na+. At physiological value of ionic strength, the inhibition can be observed at any turnover number of CcO, rather than only at low TN (<10s-1) as found previously. The inhibition requires partially oxidized state of cytochrome c and is favored by high ionic strength with a sharp transition at 0.1-0.2M. The high Ki=20-26µM found for CcO inhibition by calcium matches closely the known value of "Km" for Ca2+-induced activation of the mitochondrial calcium uniporter. The inhibition of CcO by Ca2+ is proposed to modulate mitochondrial Ca2+-uptake via the mitochondrial calcium uniporter, promote permeability transition pore opening and induce reduction of Mia40 in the mitochondrial intermembrane space.


Asunto(s)
Sitios de Unión , Calcio/química , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Mitocondrias/enzimología , Apoptosis/efectos de los fármacos , Calcio/farmacología , Canales de Calcio/química , Canales de Calcio/genética , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Mitocondrias/química , Mitocondrias/genética , Concentración Osmolar , Oxidación-Reducción/efectos de los fármacos , Unión Proteica
11.
Biochim Biophys Acta ; 1837(7): 1188-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24607866

RESUMEN

Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.


Asunto(s)
Cationes Bivalentes/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Litio/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Complejo IV de Transporte de Electrones/química , Datos de Secuencia Molecular , Unión Proteica
12.
Metallomics ; 3(4): 417-32, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21286652

RESUMEN

Circular dichroism spectra of bovine heart aa(3)-type cytochrome c oxidase have been studied with a major focus on the Soret band π → π* transitions, B(0(x,y)), in the two iron porphyrin groups of the enzyme. The spectra of the fully reduced and fully oxidized enzyme as well as of its carbon monoxide and cyanide complexes have been explored. In addition, CD spectra of the reduced and oxidized ba(3)-type cytochrome c oxidase from Thermus thermophilus were recorded for comparison. An attempt is made to interpret the CD spectra of cytochrome c oxidase with the aid of a classical model of dipole-dipole coupled oscillators taking advantage of the known 3D crystal structure of the enzyme. Simultaneous modeling of the CD and absorption spectra shows that in the bovine oxidase, the dipole-dipole interactions between the hemes a and a(3), although contributing significantly, cannot account either for the lineshape or the magnitude of the experimental spectra. However, adding the interactions of the hemes with 22 aromatic amino acid residues located within 12 Å from either of the two heme groups can be used to model the CD curves for the fully reduced and fully oxidized oxidase with reasonable accuracy. Interaction of the hemes with the peptide bond transition dipoles is found to be insignificant. The modeling indicates that the CD spectra of cytochrome oxidase in both the reduced and oxidized states are influenced significantly by interaction with Tyr244 in the oxygen-reducing center of the enzyme. Hence, CD spectroscopy may provide a useful tool for monitoring the redox/ionization state of this residue. The modeling confirms wide energy splitting of the orthogonal B(x) and B(y) transitions in the porphyrin ring of heme a.


Asunto(s)
Dicroismo Circular , Complejo IV de Transporte de Electrones/química , Animales , Monóxido de Carbono/metabolismo , Bovinos , Dicroismo Circular/métodos , Cianuros/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hierro/química , Modelos Moleculares , Miocardio/enzimología , Oxidación-Reducción , Porfirinas/química , Conformación Proteica , Thermus thermophilus/enzimología
13.
FEBS Lett ; 582(30): 4158-62, 2008 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19041645

RESUMEN

In the presence of the uncoupler, external zinc ions inhibit rapidly turnover of cytochrome c oxidase reconstituted in phospholipid vesicles or bound to the membrane of intact mitochondria. The effect is promoted by electron leaks into the oxidase during preincubation with Zn(2+). Inhibition of liposome-bound bovine cytochrome oxidase by external Zn(2+) titrates with a K(i) of 1+/-0.3 microM. Presumably, the Zn(2+)-binding group at the positively charged side is not reactive in the oxidized enzyme, but becomes accessible to the cation in some partially reduced state(s) of the oxidase; reduction of Cu(B) is tentatively proposed to be responsible for the effect.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Zinc/farmacología , Animales , Cationes Bivalentes/farmacología , Bovinos , Cobre/química , Cobre/farmacología , Complejo IV de Transporte de Electrones/química , Liposomas/química , Membranas/química , Membranas/enzimología , Mitocondrias/enzimología , Fosfolípidos/química , Ratas , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA