Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 3727, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842569

RESUMEN

The potential of high severity wildfires to increase global terrestrial carbon emissions and exacerbate future climatic warming is of international concern. Nowhere is this more prevalent than within high latitude regions where peatlands have, over millennia, accumulated legacy carbon stocks comparable to all human CO2 emissions since the beginning of the industrial revolution. Drying increases rates of peat decomposition and associated atmospheric and aquatic carbon emissions. The degree to which severe wildfires enhance drying under future climates and induce instability in peatland ecological communities and carbon stocks is unknown. Here we show that high burn severities increased post-fire evapotranspiration by 410% within a feather moss peatland by burning through the protective capping layer that restricts evaporative drying in response to low severity burns. High burn severities projected under future climates will therefore leave peatlands that dominate dry sub-humid regions across the boreal, on the edge of their climatic envelopes, more vulnerable to intense post-fire drying, inducing high rates of carbon loss to the atmosphere that amplify the direct combustion emissions.

2.
Sci Rep ; 5: 8063, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623290

RESUMEN

Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

3.
Eur J Appl Physiol ; 112(5): 1839-48, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21922261

RESUMEN

We describe the effects of multi-day relay trail running on muscle soreness and damage, and systemic immune, inflammatory, and oxidative responses. 16 male and 4 female athletes ran 894 km in 47 stages over 95 h, with mean (SD) 6.4 (1.0) stages per athlete and 19.0 (1.7) km per stage. We observed post-pre run increases in serum creatine kinase (qualified effect size extremely large, p = 0.002), IL-6 (extremely large, p < 0.001), urinary 8-isoprostane/creatinine (extremely large, p = 0.04), TNF-α (large, p = 0.002), leukocyte count (very large, p < 0.0001) and neutrophil fraction (very large, p < 0.001); and reductions in hemoglobin (moderate, p < 0.001), hematocrit (moderate, p < 0.001), and lymphocyte fraction (trivial, p < 0.001). An increase in ORAC total antioxidant capacity (TAC, small, p = 0.3) and decrease in urinary 8-OHdG/creatinine (small, p = 0.1) were not statistically significant. During the run, muscle soreness was most frequent in the quadriceps. The threshold for muscle pain (pain-pressure algometry) in the vastus lateralis and gastrocnemius was lower post-run (small, p = 0.04 and 0.03). Average running speed was correlated with algometer pain and leukocyte count (large, r = 0.52), and TAC was correlated with IL-6 (very large, r = 0.76) and 8-isoprostane/creatinine (very large, r = -0.72). Multi-day stage-racing increases inflammation, lipid peroxidation, muscle damage and soreness without oxidative DNA damage. High TAC is associated with reduced exercise-induced lipid peroxidation, but is not related to immune response or muscle damage.


Asunto(s)
Antioxidantes/metabolismo , Ejercicio Físico/fisiología , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo/fisiología , Dolor/metabolismo , Carrera/fisiología , Adulto , Creatina Quinasa/sangre , Dinoprost/análogos & derivados , Dinoprost/orina , Femenino , Humanos , Interleucina-6/sangre , Peroxidación de Lípido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA