Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 2787, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531588

RESUMEN

A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with RuII complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within ~ 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the RuII complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.

2.
J Phys Chem C Nanomater Interfaces ; 121(11): 5891-5904, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28676835

RESUMEN

Understanding the structural and electronic factors governing the efficiency of dye-sensitized NiO photocathodes is essential to optimize solar fuel production in photoelectrochemical cells (PECs). For these purpose, three different ruthenium dyes, bearing either two or four methylphosphonate anchoring groups and either a bipyridine or a dipyridophenazine ancillary ligand, were synthesized and grafted onto NiO films. These photoelectrodes were fully characterized by XPS, ToF-SIMS, UV-vis absorption, time-resolved emission and femtosecond transient absorption spectroscopies. Increasing the number of anchoring groups from two to four proved beneficial for the grafting efficiency. No significant modification of the electronic properties compared to the parent photosensitizer was observed, in accordance with the non-conjugated nature of the grafted linker. The photoelectrochemical activity of the dye-sensitized NiO electrodes was assessed in fully aqueous medium in the presence of an irreversible electron acceptor and photocurrents reaching 190 µA.cm-2 were recorded. The transient absorption study revealed the presence of two charge recombination pathways for each of the sensitizers and evidenced a stabilized charge separated state in the dppz derivative, supporting its superior photoelectrochemical activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA