Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiat Res ; 186(4): 333-344, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27602483

RESUMEN

There is little known about the effect of both reduced weight bearing and exposure to radiation during spaceflight on the mechanically-sensitive cartilage lining the knee joint. In this study, we characterized cartilage damage in rat knees after periods of reduced weight bearing with/without exposure to solar-flare-relevant radiation, then cartilage recovery after return to weight bearing. Male Sprague Dawley rats (n = 120) were either hindlimb unloaded (HLU) via tail suspension or remained weight bearing in cages (GROUND). On day 5, half of the HLU and GROUND rats were 1 Gy total-body X-ray irradiated during HLU, and half were sham irradiated (SHAM), yielding 4 groups: GROUND-SHAM; GROUND-IR; HLU-SHAM; and HLU-IR. Hindlimbs were collected from half of each group of rats on day 13. The remaining rats were then removed from HLU or remained weight bearing, and hindlimbs from these rats were collected on day 62. On day 13, glycosaminoglycan (GAG) content in cartilage lining the tibial plateau and femoral condyles of HLU rats was lower than that of the GROUND animals. Likewise, on day 13, immunoreactivity of the collagen type II-degrading matrix metalloproteinase-13 (MMP-13) and of a resultant metalloproteinase-generated neoepitope VDIPEN was increased in all groups versus GROUND-SHAM. Clustering of chondrocytes indicating cartilage damage was present in all HLU and IR groups versus GROUND-SHAM on day 13. On day 62, after 49 days of reloading, the loss of GAG content was attenuated in the HLU-SHAM and HLU-IR groups, and the increased VDIPEN staining in all treatment groups was attenuated. However, the increased chondrocyte clustering remained in all treatment groups on day 62. MMP-13 activity also remained elevated in the GROUND-IR and HLU-IR groups. Increased T2 relaxation times, measured on day 62 using 7T MRI, were greater in GROUND-IR and HLU-IR knees, indicating persistent cartilage damage in the irradiated groups. Both HLU and total-body irradiation resulted in acute degenerative and pre-arthritic changes in the knee articular cartilage of rats. A return to normal weight bearing resulted in some recovery from cartilage degradation. However, radiation delivered as both a single challenge and when combined with HLU resulted in chronic cartilage damage. These findings suggest that radiation exposure during spaceflight leads to and/or impairs recovery of cartilage upon return to reloading, generating long-term joint problems for astronauts.


Asunto(s)
Artritis/etiología , Artritis/fisiopatología , Cartílago Articular/fisiopatología , Cartílago Articular/efectos de la radiación , Articulación de la Rodilla/efectos de la radiación , Vuelo Espacial , Soporte de Peso , Animales , Artritis/metabolismo , Artritis/patología , Biomarcadores/metabolismo , Peso Corporal/efectos de la radiación , Cartílago Articular/metabolismo , Cartílago Articular/patología , Colágeno/metabolismo , Fémur/metabolismo , Fémur/fisiopatología , Fémur/efectos de la radiación , Glicosaminoglicanos/metabolismo , Suspensión Trasera/efectos adversos , Articulación de la Rodilla/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Tibia/metabolismo , Tibia/fisiopatología , Tibia/efectos de la radiación
2.
Life Sci Space Res (Amst) ; 6: 10-4, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26097807

RESUMEN

Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm×30.5 cm×40.6 cm30.5 cm×30.5 cm×40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this method may find great utility in the implementation of future ground-based studies that examine the combined spaceflight challenges of reduced loading and radiation while using the HLU rodent model.


Asunto(s)
Suspensión Trasera/métodos , Fantasmas de Imagen , Radiación Ionizante , Radiometría/métodos , Vuelo Espacial , Ingravidez/efectos adversos , Irradiación Corporal Total/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Extremidad Inferior , Aceleradores de Partículas , Ratas , Irradiación Corporal Total/métodos
3.
Biomed Sci Instrum ; 48: 470-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22846321

RESUMEN

NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0-1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA