Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Protein Sci ; 33(5): e4975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588275

RESUMEN

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/química , Conformación Molecular , Modelos Moleculares
2.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407308

RESUMEN

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Asunto(s)
Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN , Endonucleasas , Telómero , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Telómero/metabolismo , Telómero/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Reparación del ADN por Unión de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Unión Proteica , Roturas del ADN de Doble Cadena , Fosforilación , ADN/metabolismo , ADN/química , ADN/genética
3.
Bioinformatics ; 39(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713472

RESUMEN

SUMMARY: The AlphaFold2 neural network model has revolutionized structural biology with unprecedented performance. We demonstrate that by stochastically perturbing the neural network by enabling dropout at inference combined with massive sampling, it is possible to improve the quality of the generated models. We generated ∼6000 models per target compared with 25 default for AlphaFold-Multimer, with v1 and v2 multimer network models, with and without templates, and increased the number of recycles within the network. The method was benchmarked in CASP15, and compared with AlphaFold-Multimer v2 it improved the average DockQ from 0.41 to 0.55 using identical input and was ranked at the very top in the protein assembly category when compared with all other groups participating in CASP15. The simplicity of the method should facilitate the adaptation by the field, and the method should be useful for anyone interested in modeling multimeric structures, alternate conformations, or flexible structures. AVAILABILITY AND IMPLEMENTATION: AFsample is available online at http://wallnerlab.org/AFsample.


Asunto(s)
Redes Neurales de la Computación , Proteínas , Proteínas/química , Conformación Proteica , Benchmarking
4.
Proteins ; 91(12): 1734-1746, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37548092

RESUMEN

AlphaFold2 has revolutionized structure prediction by achieving high accuracy comparable to experimentally determined structures. However, there is still room for improvement, especially for challenging cases like multimers. A key to the success of AlphaFold is its ability to assess and rank its own predictions. Our basic idea for the Wallner group in CASP15 was to exploit this excellent scoring function in AlphaFold by massive sampling. To achieve this goal, we conducted AlphaFold runs using six different settings, using templates, without templates, and with an increased number of recycles for both multimer v1 and v2 weights. In all instances, we enabled dropout layers during inference, allowing for sampling of uncertainty and enhancing the diversity of the generated models. In total, 274 289 models were generated for the 38 targets in CASP15, with a median of 4810 models per target. Of these 38 targets, 10 were high quality, 11 were medium quality, 11 were acceptable, and only 6 were incorrect. The improvement over the baseline method, NBIS-AF2-multimer, is substantial, with the mean DockQ increasing from 0.43 to 0.56, with several targets showing a DockQ score increase of +0.6 units. Remarkable, considering Wallner and NBIS-AF2-multimer were using identical input data. The success can be attributed to the diversified sampling using dropout with different settings and, in particular, the use of multimer v1, which is much more susceptible to sampling compared with v2. The method is available here: http://wallnerlab.org/AFsample/.


Asunto(s)
Furilfuramida , Incertidumbre
5.
Biophys J ; 122(2): 408-418, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36474441

RESUMEN

In this work, we used small-angle x-ray and neutron scattering to reveal the shape of the protein-DNA complex of the Pseudomonas aeruginosa transcriptional regulator MexR, a member of the multiple antibiotics resistance regulator (MarR) family, when bound to one of its native DNA binding sites. Several MarR-like proteins, including MexR, repress the expression of efflux pump proteins by binding to DNA on regulatory sites overlapping with promoter regions. When expressed, efflux proteins self-assemble to form multiprotein complexes and actively expel highly toxic compounds out of the host organism. The mutational pressure on efflux-regulating MarR family proteins is high since deficient DNA binding leads to constitutive expression of efflux pumps and thereby supports acquired multidrug resistance. Understanding the functional outcome of such mutations and their effects on DNA binding has been hampered by the scarcity of structural and dynamic characterization of both free and DNA-bound MarR proteins. Here, we show how combined neutron and x-ray small-angle scattering of both states in solution support a conformational selection model that enhances MexR asymmetry in binding to one of its promoter-overlapping DNA binding sites.


Asunto(s)
Proteínas Bacterianas , ADN , Proteínas Bacterianas/química , Rayos X , ADN/genética , ADN/metabolismo , Sitios de Unión , ADN Bacteriano/metabolismo , Pseudomonas aeruginosa
6.
Front Bioinform ; 2: 959160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304330

RESUMEN

Protein interactions are key in vital biological processes. In many cases, particularly in regulation, this interaction is between a protein and a shorter peptide fragment. Such peptides are often part of larger disordered regions in other proteins. The flexible nature of peptides enables the rapid yet specific regulation of important functions in cells, such as their life cycle. Consequently, knowledge of the molecular details of peptide-protein interactions is crucial for understanding and altering their function, and many specialized computational methods have been developed to study them. The recent release of AlphaFold and AlphaFold-Multimer has led to a leap in accuracy for the computational modeling of proteins. In this study, the ability of AlphaFold to predict which peptides and proteins interact, as well as its accuracy in modeling the resulting interaction complexes, are benchmarked against established methods. We find that AlphaFold-Multimer predicts the structure of peptide-protein complexes with acceptable or better quality (DockQ ≥0.23) for 66 of the 112 complexes investigated-25 of which were high quality (DockQ ≥0.8). This is a massive improvement on previous methods with 23 or 47 acceptable models and only four or eight high quality models, when using energy-based docking or interaction templates, respectively. In addition, AlphaFold-Multimer can be used to predict whether a peptide and a protein will interact. At 1% false positives, AlphaFold-Multimer found 26% of the possible interactions with a precision of 85%, the best among the methods benchmarked. However, the most interesting result is the possibility of improving AlphaFold by randomly perturbing the neural network weights to force the network to sample more of the conformational space. This increases the number of acceptable models from 66 to 75 and improves the median DockQ from 0.47 to 0.55 (17%) for first ranked models. The best possible DockQ improves from 0.58 to 0.72 (24%), indicating that selecting the best possible model is still a challenge. This scheme of generating more structures with AlphaFold should be generally useful for many applications involving multiple states, flexible regions, and disorder.

7.
Bioinformatics ; 38(12): 3209-3215, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35575349

RESUMEN

MOTIVATION: Interactions between peptide fragments and protein receptors are vital to cell function yet difficult to experimentally determine in structural details of. As such, many computational methods have been developed to aid in peptide-protein docking or structure prediction. One such method is Rosetta FlexPepDock which consistently refines coarse peptide-protein models into sub-Ångström precision using Monte-Carlo simulations and statistical potentials. Deep learning has recently seen increased use in protein structure prediction, with graph neural networks used for protein model quality assessment. RESULTS: Here, we introduce a graph neural network, InterPepScore, as an additional scoring term to complement and improve the Rosetta FlexPepDock refinement protocol. InterPepScore is trained on simulation trajectories from FlexPepDock refinement starting from thousands of peptide-protein complexes generated by a wide variety of docking schemes. The addition of InterPepScore into the refinement protocol consistently improves the quality of models created, and on an independent benchmark on 109 peptide-protein complexes its inclusion results in an increase in the number of complexes for which the top-scoring model had a DockQ-score of 0.49 (Medium quality) or better from 14.8% to 26.1%. AVAILABILITY AND IMPLEMENTATION: InterPepScore is available online at http://wallnerlab.org/InterPepScore. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Profundo , Proteínas/química , Péptidos/química , Simulación por Computador , Método de Montecarlo , Conformación Proteica
8.
Nucleic Acids Res ; 50(6): 3505-3522, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35244724

RESUMEN

Despite MYC dysregulation in most human cancers, strategies to target this potent oncogenic driver remain an urgent unmet need. Recent evidence shows the PP1 phosphatase and its regulatory subunit PNUTS control MYC phosphorylation, chromatin occupancy, and stability, however the molecular basis remains unclear. Here we demonstrate that MYC interacts directly with PNUTS through the MYC homology Box 0 (MB0), a highly conserved region recently shown to be important for MYC oncogenic activity. By NMR we identified a distinct peptide motif within MB0 that interacts with PNUTS residues 1-148, a functional unit, here termed PNUTS amino-terminal domain (PAD). Using NMR spectroscopy we determined the solution structure of PAD, and characterised its MYC-binding patch. Point mutations of residues at the MYC-PNUTS interface significantly weaken their interaction both in vitro and in vivo, leading to elevated MYC phosphorylation. These data demonstrate that the MB0 region of MYC directly interacts with the PAD of PNUTS, which provides new insight into the control mechanisms of MYC as a regulator of gene transcription and a pervasive cancer driver.


Asunto(s)
Cromatina , Proteínas Nucleares , Proteínas de Unión al ADN/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/genética
9.
Front Bioinform ; 1: 763102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303778

RESUMEN

Peptide-protein interactions between a smaller or disordered peptide stretch and a folded receptor make up a large part of all protein-protein interactions. A common approach for modeling such interactions is to exhaustively sample the conformational space by fast-Fourier-transform docking, and then refine a top percentage of decoys. Commonly, methods capable of ranking the decoys for selection fast enough for larger scale studies rely on first-principle energy terms such as electrostatics, Van der Waals forces, or on pre-calculated statistical potentials. We present InterPepRank for peptide-protein complex scoring and ranking. InterPepRank is a machine learning-based method which encodes the structure of the complex as a graph; with physical pairwise interactions as edges and evolutionary and sequence features as nodes. The graph network is trained to predict the LRMSD of decoys by using edge-conditioned graph convolutions on a large set of peptide-protein complex decoys. InterPepRank is tested on a massive independent test set with no targets sharing CATH annotation nor 30% sequence identity with any target in training or validation data. On this set, InterPepRank has a median AUC of 0.86 for finding coarse peptide-protein complexes with LRMSD < 4Å. This is an improvement compared to other state-of-the-art ranking methods that have a median AUC between 0.65 and 0.79. When included as a selection-method for selecting decoys for refinement in a previously established peptide docking pipeline, InterPepRank improves the number of medium and high quality models produced by 80% and 40%, respectively. The InterPepRank program as well as all scripts for reproducing and retraining it are available from: http://wallnerlab.org/InterPepRank.

10.
Proc Natl Acad Sci U S A ; 117(43): 27016-27021, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33051293

RESUMEN

The opening and closing of voltage-gated ion channels are regulated by voltage sensors coupled to a gate that controls the ion flux across the cellular membrane. Modulation of any part of gating constitutes an entry point for pharmacologically regulating channel function. Here, we report on the discovery of a large family of warfarin-like compounds that open the two voltage-gated type 1 potassium (KV1) channels KV1.5 and Shaker, but not the related KV2-, KV4-, or KV7-type channels. These negatively charged compounds bind in the open state to positively charged arginines and lysines between the intracellular ends of the voltage-sensor domains and the pore domain. This mechanism of action resembles that of endogenous channel-opening lipids and opens up an avenue for the development of ion-channel modulators.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio Kv1.5/agonistas , Canales de Potasio de la Superfamilia Shaker/agonistas , Animales , Ensayos Analíticos de Alto Rendimiento , Canal de Potasio Kv1.5/metabolismo , Simulación del Acoplamiento Molecular , Técnicas de Placa-Clamp , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
11.
Acta Crystallogr D Struct Biol ; 76(Pt 3): 285-290, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133992

RESUMEN

Model quality assessment programs estimate the quality of protein models and can be used to estimate local error in protein models. ProQ3D is the most recent and most accurate version of our software. Here, it is demonstrated that it is possible to use local error estimates to substantially increase the quality of the models for molecular replacement (MR). Adjusting the B factors using ProQ3D improved the log-likelihood gain (LLG) score by over 50% on average, resulting in significantly more successful models in MR compared with not using error estimates. On a data set of 431 homology models to address difficult MR targets, models with error estimates from ProQ3D received an LLG of >50 for almost half of the models 209/431 (48.5%), compared with 175/431 (40.6%) for the previous version, ProQ2, and only 74/431 (17.2%) for models with no error estimates, clearly demonstrating the added value of using error estimates to enable MR for more targets. ProQ3D is available from http://proq3.bioinfo.se/ both as a server and as a standalone download.


Asunto(s)
Modelos Moleculares , Proteínas/química , Programas Informáticos , Error Científico Experimental , Homología Estructural de Proteína
12.
Bioinformatics ; 36(10): 3266-3267, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32049311

RESUMEN

MOTIVATION: In the past few years, drug discovery processes have been relying more and more on computational methods to sift out the most promising molecules before time and resources are spent to test them in experimental settings. Whenever the protein target of a given disease is not known, it becomes fundamental to have accurate methods for ligand-based virtual screening, which compares known active molecules against vast libraries of candidate compounds. Recently, 3D-based similarity methods have been developed that are capable of scaffold hopping and to superimpose matching molecules. RESULTS: Here, we present InterLig, a new method for the comparison and superposition of small molecules using topologically independent alignments of atoms. We test InterLig on a standard benchmark and show that it compares favorably to the best currently available 3D methods. AVAILABILITY AND IMPLEMENTATION: The program is available from http://wallnerlab.org/InterLig. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Descubrimiento de Drogas , Programas Informáticos , Ligandos
13.
Bioinformatics ; 36(8): 2458-2465, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31917413

RESUMEN

MOTIVATION: Interactions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming and difficult because of the inherent flexibility of the peptide ligand. Although several prediction-methods exist, most are limited in performance or availability. RESULTS: InterPep2 is a freely available method for predicting the structure of peptide-protein interactions. Improved performance is obtained by using templates from both peptide-protein and regular protein-protein interactions, and by a random forest trained to predict the DockQ-score for a given template using sequence and structural features. When tested on 252 bound peptide-protein complexes from structures deposited after the complexes used in the construction of the training and templates sets of InterPep2, InterPep2-Refined correctly positioned 67 peptides within 4.0 Å LRMSD among top10, similar to another state-of-the-art template-based method which positioned 54 peptides correctly. However, InterPep2 displays a superior ability to evaluate the quality of its own predictions. On a previously established set of 27 non-redundant unbound-to-bound peptide-protein complexes, InterPep2 performs on-par with leading methods. The extended InterPep2-Refined protocol managed to correctly model 15 of these complexes within 4.0 Å LRMSD among top10, without using templates from homologs. In addition, combining the template-based predictions from InterPep2 with ab initio predictions from PIPER-FlexPepDock resulted in 22% more near-native predictions compared to the best single method (22 versus 18). AVAILABILITY AND IMPLEMENTATION: The program is available from: http://wallnerlab.org/InterPep2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Péptidos , Proteínas
14.
Nat Struct Mol Biol ; 26(11): 1035-1043, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686052

RESUMEN

Transcription factor c-MYC is a potent oncoprotein; however, the mechanism of transcriptional regulation via MYC-protein interactions remains poorly understood. The TATA-binding protein (TBP) is an essential component of the transcription initiation complex TFIID and is required for gene expression. We identify two discrete regions mediating MYC-TBP interactions using structural, biochemical and cellular approaches. A 2.4 -Å resolution crystal structure reveals that human MYC amino acids 98-111 interact with TBP in the presence of the amino-terminal domain 1 of TBP-associated factor 1 (TAF1TAND1). Using biochemical approaches, we have shown that MYC amino acids 115-124 also interact with TBP independently of TAF1TAND1. Modeling reveals that this region of MYC resembles a TBP anchor motif found in factors that regulate TBP promoter loading. Site-specific MYC mutants that abrogate MYC-TBP interaction compromise MYC activity. We propose that MYC-TBP interactions propagate transcription by modulating the energetic landscape of transcription initiation complex assembly.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/química , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
15.
PLoS One ; 14(8): e0220182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31415569

RESUMEN

In the last decades, huge efforts have been made in the bioinformatics community to develop machine learning-based methods for the prediction of structural features of proteins in the hope of answering fundamental questions about the way proteins function and their involvement in several illnesses. The recent advent of Deep Learning has renewed the interest in neural networks, with dozens of methods being developed taking advantage of these new architectures. However, most methods are still heavily based pre-processing of the input data, as well as extraction and integration of multiple hand-picked, and manually designed features. Multiple Sequence Alignments (MSA) are the most common source of information in de novo prediction methods. Deep Networks that automatically refine the MSA and extract useful features from it would be immensely powerful. In this work, we propose a new paradigm for the prediction of protein structural features called rawMSA. The core idea behind rawMSA is borrowed from the field of natural language processing to map amino acid sequences into an adaptively learned continuous space. This allows the whole MSA to be input into a Deep Network, thus rendering pre-calculated features such as sequence profiles and other features calculated from MSA obsolete. We showcased the rawMSA methodology on three different prediction problems: secondary structure, relative solvent accessibility and inter-residue contact maps. We have rigorously trained and benchmarked rawMSA on a large set of proteins and have determined that it outperforms classical methods based on position-specific scoring matrices (PSSM) when predicting secondary structure and solvent accessibility, while performing on par with methods using more pre-calculated features in the inter-residue contact map prediction category in CASP12 and CASP13. Clearly demonstrating that rawMSA represents a promising development that can pave the way for improved methods using rawMSA instead of sequence profiles to represent evolutionary information in the coming years. Availability: datasets, dataset generation code, evaluation code and models are available at: https://bitbucket.org/clami66/rawmsa.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Profundo , Alineación de Secuencia , Proteínas/química
16.
Proteins ; 87(12): 1361-1377, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31265154

RESUMEN

Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part of most protein folding pipelines and important for reliable identification of the best models when multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in the field of estimation of model accuracy (EMA) as seen from the progress of the most successful methods in CASP13. We show small but clear progress, that is, several methods perform better than the best methods from CASP12 when tested on CASP13 EMA targets. Some progress is driven by applying deep learning and residue-residue contacts to model accuracy prediction. We show that the best EMA methods select better models than the best servers in CASP13, but that there exists a great potential to improve this further. Also, according to the evaluation criteria based on local similarities, such as lDDT and CAD, it is now clear that single model accuracy methods perform relatively better than consensus-based methods.


Asunto(s)
Biología Computacional , Conformación Proteica , Proteínas/ultraestructura , Programas Informáticos , Algoritmos , Bases de Datos de Proteínas , Modelos Moleculares , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína
17.
Sci Rep ; 9(1): 4267, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862810

RESUMEN

Protein-peptide interactions play an important role in major cellular processes, and are associated with several human diseases. To understand and potentially regulate these cellular function and diseases it is important to know the molecular details of the interactions. However, because of peptide flexibility and the transient nature of protein-peptide interactions, peptides are difficult to study experimentally. Thus, computational methods for predicting structural information about protein-peptide interactions are needed. Here we present InterPep, a pipeline for predicting protein-peptide interaction sites. It is a novel pipeline that, given a protein structure and a peptide sequence, utilizes structural template matches, sequence information, random forest machine learning, and hierarchical clustering to predict what region of the protein structure the peptide is most likely to bind. When tested on its ability to predict binding sites, InterPep successfully pinpointed 255 of 502 (50.7%) binding sites in experimentally determined structures at rank 1 and 348 of 502 (69.3%) among the top five predictions using only structures with no significant sequence similarity as templates. InterPep is a powerful tool for identifying peptide-binding sites; with a precision of 80% at a recall of 20% it should be an excellent starting point for docking protocols or experiments investigating peptide interactions. The source code for InterPred is available at http://wallnerlab.org/InterPep/ .


Asunto(s)
Biología Computacional/métodos , Aprendizaje Automático , Simulación del Acoplamiento Molecular/métodos , Péptidos/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Humanos , Péptidos/genética , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Proteínas/genética , Programas Informáticos
18.
Bioinformatics ; 34(17): i787-i794, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423106

RESUMEN

Motivation: Protein-protein interactions (PPI) are essential for the function of the cellular machinery. The rapid growth of protein-protein complexes with known 3D structures offers a unique opportunity to study PPI to gain crucial insights into protein function and the causes of many diseases. In particular, it would be extremely useful to compare interaction surfaces of monomers, as this would enable the pinpointing of potential interaction surfaces based solely on the monomer structure, without the need to predict the complete complex structure. While there are many structural alignment algorithms for individual proteins, very few have been developed for protein interfaces, and none that can align only the interface residues to other interfaces or surfaces of interacting monomer subunits in a topology independent (non-sequential) manner. Results: We present InterComp, a method for topology and sequence-order independent structural comparisons. The method is general and can be applied to various structural comparison applications. By representing residues as independent points in space rather than as a sequence of residues, InterComp can be applied to a wide range of problems including interface-surface comparisons and interface-interface comparisons. We demonstrate a use-case by applying InterComp to find similar protein interfaces on the surface of proteins. We show that InterComp pinpoints the correct interface for almost half of the targets (283 of 586) when considering the top 10 hits, and for 24% of the top 1, even when no templates can be found with regular sequence-order dependent structural alignment methods. Availability and implementation: The source code and the datasets are available at: http://wallnerlab.org/InterComp. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas/química , Algoritmos , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos
19.
J Gen Physiol ; 150(8): 1215-1230, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30002162

RESUMEN

Voltage-gated ion channels are key molecules for the generation of cellular electrical excitability. Many pharmaceutical drugs target these channels by blocking their ion-conducting pore, but in many cases, channel-opening compounds would be more beneficial. Here, to search for new channel-opening compounds, we screen 18,000 compounds with high-throughput patch-clamp technology and find several potassium-channel openers that share a distinct biaryl-sulfonamide motif. Our data suggest that the negatively charged variants of these compounds bind to the top of the voltage-sensor domain, between transmembrane segments 3 and 4, to open the channel. Although we show here that biaryl-sulfonamide compounds open a potassium channel, they have also been reported to block sodium and calcium channels. However, because they inactivate voltage-gated sodium channels by promoting activation of one voltage sensor, we suggest that, despite different effects on the channel gates, the biaryl-sulfonamide motif is a general ion-channel activator motif. Because these compounds block action potential-generating sodium and calcium channels and open an action potential-dampening potassium channel, they should have a high propensity to reduce excitability. This opens up the possibility to build new excitability-reducing pharmaceutical drugs from the biaryl-sulfonamide scaffold.


Asunto(s)
Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Células CHO , Cricetulus , Ensayos Analíticos de Alto Rendimiento , Cinética , Bibliotecas de Moléculas Pequeñas
20.
Sci Rep ; 8(1): 9939, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967418

RESUMEN

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.


Asunto(s)
Caspasa 12/metabolismo , Caspasas/metabolismo , Biología Computacional/métodos , Modelos Moleculares , Programas Informáticos , Caspasa 12/química , Caspasas/química , Humanos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA