RESUMEN
Ambient sound was continuously recorded for 52 days by three synchronized, single-hydrophone, near-bottom receivers. The receivers were moored at depths of 2573, 2994, and 4443 m on flanks and in a trough between the edifices of the Atlantis II seamounts. The data reveal the power spectra and intermittency of the ambient sound intensity in a 13-octave frequency band from 0.5 to 4000 Hz. Statistical distribution of sound intensity exhibits much heavier tails than in the expected exponential intensity distribution throughout the frequency band of observations. It is established with high statistical significance that the data are incompatible with the common assumption of normally distributed ambient noise in deep water. Spatial variability of the observed ambient sound appears to be controlled by the seafloor properties, bathymetric shadowing, and nonuniform distribution of the noise sources on the sea surface. Temporal variability of ambient sound is dominated by changes in the wind speed and the position of the Gulf Stream relative to the experiment site. Ambient sound intensity increases by 4-10 dB when the Gulf Stream axis is within 25 km from the receivers. The sound intensification is attributed to the effect of the Gulf Stream current on surface wave breaking.
RESUMEN
Knowledge of near-bottom ocean current velocities and especially their extreme values is necessary to understand geomorphology of the seafloor and composition of benthic biological communities and quantify mechanical energy dissipation by bottom drag. Direct measurements of near-bottom currents in deep ocean remain scarce because of logistical challenges. Here, we report the results of flow velocity and pressure fluctuation measurements at three sites with depths of 2573-4443 m in the area where the Gulf Stream interacts with the New England Seamounts. Repeated episodes of unexpectedly strong near-bottom currents were observed, with the current speed at 4443 m of more than 0.40 m/s. At 2573 m, current speeds exceeded 0.20 m/s approximately 5% of the time throughout the entire eight-week measurement period. The maximum flow speeds of over 1.10 m/s recorded at this site significantly surpass the fastest previously reported directly measured current speeds at comparable or larger depths. A strong correlation is found between the noise intensity in the infrasonic band and the measured current speed. The noise intensity and the characteristic frequency increase with the increasing current speed. Machine-learning tools are employed to infer current speeds from flow-noise measurements at the site not equipped with a current meter.