Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; : e0129324, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212447

RESUMEN

Reassortant Eurasian avian-like H1N1 (rEA H1N1) viruses carrying the internal genes of H1N1/2009 virus have been circulating in pigs for more than 10 years and have caused sporadic human infections. The enhanced virulence phenotype of the rEA H1N1 viruses highlights potential risks to public health. However, the molecular mechanism underlying the viral pathogenicity of the currently circulating rEA H1N1 viruses remains unclear. In this study, we found that two naturally isolated rEA H1N1 swine influenza viruses, A/swine/Liaoning/FX38/2017 (FX38) and A/swine/Liaoning/SY72/2018 (SY72), possessed similar genetic characteristics but exhibited significantly different pathogenicity in a mouse model. Using reverse genetics, we demonstrated that amino acid mutations at positions 100 and 122 in the polymerase acidic (PA) protein had individual and synergistic effects on the polymerase activity and viral replication capacity in vitro, as well as the viral pathogenicity in mice. Furthermore, we revealed that amino acid residue 100 in PA influenced the transcription of viral RNA (vRNA) by altering the endonuclease activity, and amino acid residue 122 affected the synthesis of complementary RNA and messenger RNA by altering the RNA-binding ability and endonuclease activity of the PA protein. Taken together, we identified that two naturally occurring amino acid mutations in PA derived from H1N1/2009 virus are crucial determinants of the virulence of rEA H1N1 viruses and revealed the differential mechanism by which these two mutations affect the transcription and replication of vRNA. These findings will extend our understanding of the roles of PA in the virulence of influenza A viruses.IMPORTANCEMultiple genetic determinants are involved in the virulence of influenza A viruses. In this study, we identified two naturally occurring amino acid mutations, located at residues 100 and 122 in the polymerase acidic (PA) protein, which are associated with viral polymerase activity, replication competence, and pathogenicity in mice. In particular, we clarified the specific mechanism by which the two residues play an important role in viral transcription and replication. These findings will help to improve understanding the functions of amino acid residues in the N-terminal region of the PA protein involved in the pathogenicity of influenza A viruses.

2.
Food Chem ; 347: 128985, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476920

RESUMEN

As the most important tenderness related protein in mammal, there are few studies on how the nanoscale morphology of collagen I in tissues is related to traditional meat processing. The ultrastructure and mechanical characteristics of collagen fibers in tendon with different treatments have been explored in this study. Collagen fibers in homogenate group and acetic acid group were treated with ultrasound and thermal treatment. The nanoscale morphology of collagen fiber in homogenate group became granular at 60 °C and gelatin was formed at 70 °C. The collagen fibers extracted from acetic acid are unstable and easier to break under the same processing parameters, when compared with homogenated collagen fibers in both ultrasound and thermal treatment. The results suggested that acetic acid can disassemble the salt bond and Schiff-base in collagen, and the collagen fibers became loose but the triple helix structure remained integrity.


Asunto(s)
Colágeno/ultraestructura , Microscopía de Fuerza Atómica , Tendones/metabolismo , Ácido Acético/química , Animales , Bovinos , Colágeno/química , Bases de Schiff/química , Sonicación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA