Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Biosci ; 13(1): 228, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111043

RESUMEN

Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.

2.
Protein Cell ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991243

RESUMEN

Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses (DDR). In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.

3.
Stem Cell Reports ; 17(5): 1183-1197, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35395177

RESUMEN

Telomere integrity is critical for embryonic development, and core telomere-binding proteins, such as TIN2, are key to maintaining telomere stability. Here, we report that homozygous Tin2S341X resulted in embryonic lethality in mice and reduced expression of Tin2 in the derived mouse embryonic stem cells (mESCs). Homozygous mutant mESCs were able to self-renew and remain undifferentiated but displayed many phenotypes associated with alternative lengthening of telomeres (ALT), including excessively long and heterogeneous telomeres, increased ALT-associated promyelocytic leukemia (PML) bodies, and unstable chromosomal ends. These cells also showed upregulation of Zscan4 expression and elevated targeting of DAXX/ATRX and H3K9me3 marks on telomeres. Furthermore, the mutant mESCs were impeded in their differentiation capacity. Upon differentiation, DAXX/ATRX and PML bodies disassociated from telomeres in these cells, where elevated DNA damage was also apparent. Our results reveal differential responses to telomere dysfunction in mESCs versus differentiated cells and highlight the critical role of TIN2 in embryonic development.


Asunto(s)
Homeostasis del Telómero , Telómero , Animales , Células Madre Embrionarias/metabolismo , Ratones , Fenotipo , Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
4.
Cell Biosci ; 11(1): 149, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330324

RESUMEN

BACKGROUND: About 10-15% of tumor cells extend telomeres through the alternative lengthening of telomeres (ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored. RESULTS: Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, thus maintaining the H3K9me3 heterochromatin state of telomere DNA. CONCLUSIONS: Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells.

5.
Nucleic Acids Res ; 48(11): 6019-6031, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32379321

RESUMEN

ALT tumor cells often contain abundant DNA damage foci at telomeres and rely on the alternative lengthening of telomeres (ALT) mechanism to maintain their telomeres. How the telomere chromatin is regulated and maintained in these cells remains largely unknown. In this study, we present evidence that heterochromatin protein 1 binding protein 3 (HP1BP3) can localize to telomeres and is particularly enriched on telomeres in ALT cells. HP1BP3 inhibition led to preferential growth inhibition of ALT cells, which was accompanied by telomere chromatin decompaction, increased presence of C-circles, more pronounced ALT-associated phenotypes and elongated telomeres. Furthermore, HP1BP3 appeared to participate in regulating telomere histone H3K9me3 epigenetic marks. Taken together, our data suggest that HP1BP3 functions on telomeres to maintain telomere chromatin and represents a novel target for inhibiting ALT cancer cells.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Telómero/metabolismo , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN , Eucromatina/genética , Eucromatina/metabolismo , Técnicas de Silenciamiento del Gen , Heterocromatina/genética , Código de Histonas , Histonas/química , Humanos , Metilación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Homeostasis del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA