Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Entomol ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378330

RESUMEN

(E)-ß-farnesene (EBF) stands out as a crucial volatile organic compound, exerting significant influence on the complex interactions between plants, aphids, and predator insects. Serving as an alarm signal within aphids, EBF is also emitted by plants as a defense mechanism to attract aphid predators. This review delves into EBF sources, functions, biosynthesis, detection mechanisms, and its coevolutionary impacts on aphids and insect predators. The exploration underscores the need to comprehend the biophysical and structural foundations of EBF receptors in aphids, emphasizing their role in unraveling the intricate patterns and mechanisms of interaction between EBF and target receptors. Furthermore, we advocate for adopting structure-based or machine-learning methodologies to anticipate receptor-ligand interactions. On the basis of this knowledge, we propose future research directions aiming at designing, optimizing, and screening more stable and efficient active odorants. A pivotal outcome of this comprehensive investigation aims to contribute to the development of more effective aphid-targeted control strategies.

2.
Insect Biochem Mol Biol ; 173: 104180, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218166

RESUMEN

Winged parthenogenetic aphids are mainly responsible for migration and dispersal. Aphid alarm pheromone (E)-ß-Farnesene (EBF) has dual effects on repelling and stimulating wing differentiation in aphids. Previous studies have shown that the odorant coreceptor SmisOrco is involved in the perception of EBF by S. miscanthi; however, its EBF-specific odorant receptor (OR) and the difference between winged and wingless aphids remain unclear. In this study, the Xenopus oocyte expression system and RNAi technology were used to detect the transmission of EBF signals, and it was found that the olfactory receptor SmisOR5 is an EBF-specific OR in S. miscanthi and is specifically highly expressed in the antennae of winged aphids. Furthermore, when OR5 was silenced with dsRNA, the repellent effect of EBF was weakened, and aphids showed more active aimless movements. Therefore, as a specific OR for EBF, the high expression level of SmisOR5 in winged aphids suggests a molecular basis for its high sensitivity to EBF. This study advances our understanding of the molecular mechanisms of aphid EBF perception and provides novel ideas for effective management and prevention of the migration of winged aphids.


Asunto(s)
Áfidos , Proteínas de Insectos , Receptores Odorantes , Animales , Áfidos/metabolismo , Áfidos/genética , Áfidos/fisiología , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sesquiterpenos/metabolismo , Alas de Animales/metabolismo , Feromonas/metabolismo , Antenas de Artrópodos/metabolismo , Interferencia de ARN
3.
Life (Basel) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39337898

RESUMEN

Numerous insects are attracted to low levels of ammonia, utilizing it as a cue to locate food sources. The Ammonium Transporter (Amt), a highly conserved, atypical olfactory receptor, has been shown to mediate the detection of ammonia in insects. While the attraction of Tephritidae to ammonia is well established, knowledge about the Amt in this family is limited. The species Bactrocera dorsalis (Hendel 1912), Bactrocera cucurbitae (Coquillett 1899), Bactrocera correcta Bezzi 1916 and Bactrocera tau (Walker 1849), which are common agricultural pests within Tephritidae, exhibit numerous ecological similarities, offering a solid foundation for studying Amt characteristics in this family. In this study, we elucidated the sequences, evolutionary relationships, and expression patterns of Amt in these four species. The results indicated that these Amts share the same open reading frame, containing 1770 bp that encode a protein of 589 amino acid residues. These Amt proteins exhibit the typical structural characteristics of Amts, including an 11-transmembrane domain with an extracellular N-terminus and an intracellular C-terminus. They also have the ability to form trimers in the membrane. Additionally, they contain three conserved amino acid residues essential for ammonia transport: A189, H195, and H352. Phylogenetic and expression pattern analyses showed that they are highly conserved in Diptera and are significantly expressed in antennae. This study is the first report characterizing the Amt gene in four Tephritidae species. These findings provide a foundation for further exploration into the roles of these genes in their particular biological contexts.

4.
bioRxiv ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39314485

RESUMEN

COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes ( SFTPA1 and SFTPA2 ) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A 2 , 6A 4 ) and SP-A2 (variants 1A 0 , 1A 3 ). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo . Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A 2 (6A 2 ), hACE2/6A 4 (6A 4 ), hACE2/1A 0 (1A 0 ), and hACE2/1A 3 (1A 3 ), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 10 3 PFU SARS-CoV-2 or saline (Sham). Infected KO and 1A 0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A 0 , and 6A 2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88 , Stat3 , IL-18 , and Jak2 in the lungs of KO and 1A 0 mice. However, Mapk1 was significantly downregulated in 6A 2 versus 1A 0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6 and IL-1ß were comparatively higher in the lungs and sera of KO and 1A 0 mice with the highest mortality rate. These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.

5.
BMC Pediatr ; 24(1): 538, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174910

RESUMEN

BACKGROUND: Chronic cough in children is closely related to gastroesophageal reflux (GER). However, this association has not been adequately studied due to a lack of diagnostic tools. Combined esophageal multichannel intraluminal impedance and pH (MII-pH) monitoring is considered the most accurate method for evaluating the association between symptoms and reflux, but data on its use in children with chronic cough are still lacking. We aimed to assess the association between chronic cough and GER in children through MII-pH monitoring. METHODS: Children with chronic cough (> 4 weeks) who were suspected gastroesophageal reflux disease(GERD) were selected to undergo 24 h MII-pH monitoring at our hospital. Patients were divided into groups according to their age, body position, reflux index (RI) or total reflux events, and the differences between the groups were analyzed. Then the significance and value of 24 h pH and impedance monitoring in chronic cough and the relationship between chronic cough and reflux were discussed. RESULTS: Overall, 426 patients were included. The median age was 12 months (interquartile range: 6-39.5 months), 129 (30.3%) patients had RI > 7% detected by pH-metry, and 290 (68.1%) patients had positive diagnosis based on the impedance data. GER predominantly occurred in the upright position and mostly involved weakly acidic reflux and mixed gas-liquid reflux. There were 14.1% of children in non-acid GER group were SAP positive showing no difference in acid GER group 13.2% (P = 0.88), whereas patients with SAP > 95% in MII positive group (47[16.2%]) is higher than in MII negative group (P < 0.05). CONCLUSION: Twenty four hour MII-pH monitoring is safe, well tolerated in children, but also has a higher detection rate of gastroesophageal reflux. It can find identify weakly acidic reflux, weakly alkaline reflux and reflux events with different physical properties, which can explain the relationship between GER and chronic cough more comprehensively. It provides new approach for exploring the etiology, diagnosis and treatment of children with chronic cough.


Asunto(s)
Tos Crónica , Impedancia Eléctrica , Monitorización del pH Esofágico , Reflujo Gastroesofágico , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Tos Crónica/diagnóstico , Tos Crónica/etiología , Reflujo Gastroesofágico/diagnóstico , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/fisiopatología , Estudios Retrospectivos
6.
J Agric Food Chem ; 72(33): 18353-18364, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39165161

RESUMEN

Hyphantria cunea (Lepidoptera: Erebidae) is difficult and costly to control as a quarantine pest found globally. Sex pheromone trapping is an effective measure for its population monitoring and control; however, the peripheral neural mechanism of sex pheromone recognition in H. cunea remains unclear. An electrophysiological analysis showed that both male and female moths of H. cunea responded to four components of sex pheromones and the responses of male moths were stronger than those of the female moths. We identified three types of trichoid sensilla (ST) responsive to sex pheromones using the single sensillum recording technique. Each type was involved in recognizing 9R, 10S-epoxy-1, Z3, Z6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy). Four peripheral neurons involved in the olfactory encoding of sex pheromones were identified. Four candidate pheromone receptor (PR) genes, HcunPR1a, HcunPR1b, HcunPR3, and HcunPR4, were screened by transcriptome sequencing. All of them were highly expressed in the antennae of males, except for HcunPR4, which was highly expressed in the antennae of females. Functional identification showed that HcunPR1a responded to sex pheromone. Other HcunPRs were not functionally identified. In summary, neurons involved in sex pheromone recognition of H. cunea were located in the ST, and HcunPR1a recognized secondary pheromone components 1, Z3, Z6-9S, 10R-epoxy-21Hy. Interestingly, PRs that recognize the main components of the sex pheromone may be located in an unknown branch of the olfactory receptor and merit further study. Our findings provide a better understanding of the peripheral neural coding mechanism of type II sex pheromones, and HcunPR1a may provide a target for the subsequent development of highly effective and specific biopesticides for H. cunea.


Asunto(s)
Proteínas de Insectos , Mariposas Nocturnas , Receptores de Feromonas , Atractivos Sexuales , Animales , Atractivos Sexuales/metabolismo , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Masculino , Femenino , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Neuronas/metabolismo
7.
Ann Med ; 56(1): 2380797, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39054612

RESUMEN

BACKGROUND: Current diagnostic methods cannot effectively distinguish between latent tuberculosis infection (LTBI) and active tuberculosis (ATB). This study aims to explore novel non-invasive diagnostic biomarkers for LTBI and to elucidate possible molecular mechanisms of LTBI pathogenesis. METHODS: Three GEO datasets (GSE19439, GSE19444, and GSE62525) were utilized to analyze the differentially expressed genes (DEGs). Functional enrichment studies were then performed on these DEGs. To ascertain potential diagnostic biomarkers, we utilized two different machine learning techniques: LASSO and RF. ROC curves were constructed in both the training and validation datasets to assess the diagnostic efficacy. The expression of identified biomarkers was verified by RT-qPCR in our own Chinese cohort. Using CIBERSORT, we estimated the abundances of 22 immune cell types in LTBI group, and subsequently analyzed the relationship between biomarker expression and immune cell infiltration. RESULTS: 166 DEGs were identified between ATB and LTBI groups, which are primarily associated with immune responses, inflammatory signaling pathways, and infection factors. Following that, 22 candidate diagnostic biomarkers for LTBI were selected in the machine learning process. Three up-regulated genes, MORN3, LLGL2, and IFT140, whose expression levels were not previously reported in TB, were validated using the training and validation cohort datasets. In our own Chinese cohort, we also found that MORN3 and LLGL2 showed good diagnostic effect using RT-qPCR method. Finally, we revealed the specific infiltration features of immune cells in LTBI and observed a notable correlation between potential marker expression and immune cells. CONCLUSIONS: MORN3 and LLGL2 emerged as candidate diagnostic biomarkers for LTBI, following the elucidation of the key immune cell types involved. Our findings will contribute to providing a potential target for early noninvasive diagnosis of LTBI patients.


Asunto(s)
Biomarcadores , Tuberculosis Latente , Aprendizaje Automático , Humanos , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/inmunología , Biomarcadores/metabolismo , Femenino , Masculino , Perfilación de la Expresión Génica/métodos , Adulto , Curva ROC
8.
Front Physiol ; 15: 1384426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952867

RESUMEN

Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.

9.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028256

RESUMEN

Introduction. Pre-existing fluoroquinolones (FQs) resistance is a major threat in treating multidrug-resistant (MDR) tuberculosis. Sitafloxacin (Sfx) is a new broad-spectrum FQ.Hypothesis. Sfx is more active against drug-resistant Mycobacterium tuberculosis (Mtb) isolates.Aim. To determine whether there is cross-resistance between Sfx and ofloxacin (Ofx), levofloxacin (Lfx) and moxifloxacin (Mfx) in MDR Mtb.Methods. A total of 106 clinical Mtb isolates, including 23 pan-susceptible and 83 MDR strains, were analysed for Sfx, Lfx and Mfx resistance using MIC assay. The isolates were also subjected to whole-genome sequencing to analyse drug-resistant genes.Results. Sfx exhibited the most robust inhibition activity against Mtb clinical isolates, with a MIC50 of 0.0313 µg ml-1 and MIC90 of 0.125 µg ml-1, which was lower than that of Mfx (MIC50 = 0.0625 µg ml-1, MIC90 = 1 µg ml-1) and Lfx (MIC50 = 0.125 µg ml-1, MIC90 = 2 µg ml-1). We determined the tentative epidemiological cut-off values as 0.5 µg ml-1 for Sfx. Also, 8.43% (7/83), 43.37% (36/83), 42.17% (35/83) and 51.81% (43/83) MDR strains were resistant to Sfx, Mfx, Lfx and Ofx, respectively. Cross-resistance between Ofx, Lfx and Mfx was 80.43% (37/46). Only 15.22% (7/46) of the pre-existing FQs resistance isolates were resistant to Sfx. Among the 30 isolates with mutations in gyrA or gyrB, 5 (16.67%) were Sfx resistant. The combination of Sfx and rifampicin could exert partial synergistic effects, and no antagonism between Sfx and six clinically important anti-Mtb antibiotics was evident.Conclusion. Sfx exhibited superior activity against MDR isolates comparing to Lfx and Mfx, and could potentially overcome the majority pre-existing FQs resistance in Mtb strains.


Asunto(s)
Antituberculosos , Farmacorresistencia Bacteriana Múltiple , Fluoroquinolonas , Levofloxacino , Pruebas de Sensibilidad Microbiana , Moxifloxacino , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Fluoroquinolonas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Moxifloxacino/farmacología , Levofloxacino/farmacología , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Antituberculosos/farmacología , Secuenciación Completa del Genoma
10.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973691

RESUMEN

Introduction. Aminoglycoside antibiotics such as amikacin and kanamycin are important components in the treatment of Mycobacterium tuberculosis (Mtb) infection. However, more and more clinical strains are found to be aminoglycoside antibiotic-resistant. Apramycin is another kind of aminoglycoside antibiotic that is commonly used to treat infections in animals.Hypothesis. Apramycin may have in vitro activity against Mtb.Aim. This study aims to evaluate the efficacy of apramycin against Mtb in vitro and determine its epidemiological cut-off (ECOFF) value.Methodology. One hundred Mtb isolates, including 17 pansusceptible and 83 drug-resistant tuberculosis (DR-TB) strains, were analysed for apramycin resistance using the MIC assay.Results. Apramycin exhibited significant inhibitory activity against Mtb clinical isolates, with an MIC50 of 0.5 µg ml-1 and an MIC90 of 1 µg ml-1. We determined the tentative ECOFF value as 1 µg ml-1 for apramycin. The resistant rates of multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains were 12.12 % (4/33), 20.69 % (6/29) and 66.67 % (14/21), respectively. The rrs gene A1401G is associated with apramycin resistance, as well as the cross-resistance between apramycin and other aminoglycosides.Conclusion. Apramycin shows high in vitro activity against the Mtb clinical isolates, especially the MDR-TB clinical isolates. This encouraging discovery calls for more research on the functions of apramycin in vivo and as a possible antibiotic for the treatment of drug-resistant TB.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Nebramicina , Nebramicina/análogos & derivados , Nebramicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple
11.
Insects ; 15(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39057244

RESUMEN

The intricate relationships between plants and insects are essential for understanding ecological dynamics. Among these interactions, HIPVs serve as a pivotal defense mechanism. Our findings reveal the highly conserved nature of the GOX gene within the Lepidoptera order, highly expressed in the salivary glands of S. frugiperda, and its role in mediating maize's defense responses. Notably, salivary GOX activity expression significantly decreases subsequent gene knockout. The presence of GOX in the saliva of S. frugiperda significantly modulates the emission of HIPVs during maize consumption. This research delineates that GOX selectively inhibits the emission of certain green leaf volatiles (GLVs) while concurrently enhancing the release of terpene volatiles. This study unveils a novel mechanism whereby S. frugiperda utilizes GOX proteins in OS to modulate volatile emissions from maize, offering fresh perspectives on the adaptive evolution of phytophagous insects and their interactions with their preferred host plants.

12.
Pestic Biochem Physiol ; 203: 105998, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084772

RESUMEN

Recognition of sex pheromones released by heterosexual moths via sex pheromone receptors is key for establishing mating connections in moths. The day-flying moth Phauda flammans is an oligophagous pest in southern cities of China and Southeast Asian countries. Our previous study reported that male P. flammans can be attracted to two sex pheromone compounds [Z-9-hexadecenal and (Z, Z, Z)-9,12,15-octadecadienal] released by females in the field; however, the mechanism of olfactory recognition is not clear. In this study, two sex pheromone receptor genes (PflaOR29 and PflaOR44) were cloned. Among the different tissues, both PflaOR29 and PflaOR44 were highly expressed in the antennae of mated male adults. At different developmental stages, the expression levels of PflaOR29 and PflaOR44 were significantly greater in mated male adults than other stages. The fluorescence signals of PflaOR29 and PflaOR44 were mostly distributed on the dorsal side of the antennae, with a large number of trichoid sensilla. The results of the gene function of PflaOR29 and PflaOR44 based on a Drosophila empty neuron heterologous expression system indicated that PflaOR29 strongly responded to (Z, Z, Z)-9,12,15-octadecadienal but not to Z-9-hexadecenal, whereas PflaOR44 did not respond to the two sex pheromones. Our findings clarify the sex pheromone receptor gene corresponding to (Z, Z, Z)-9,12,15-octadecatrienal. These results provide essential information for analyzing the mechanism of sexual communication in diurnal moths and for identifying target genes for the development of efficient attractants.


Asunto(s)
Proteínas de Insectos , Mariposas Nocturnas , Receptores de Feromonas , Atractivos Sexuales , Animales , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/genética , Masculino , Atractivos Sexuales/metabolismo , Femenino , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Filogenia , Antenas de Artrópodos/metabolismo
13.
Life (Basel) ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38929696

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), poses a significant threat to the global fruit industry, causing damage to diverse fruits like citrus, mango, and guava. Chemical pesticides have limited effectiveness, and pesticide residues and pesticide resistance are pressing issues. Therefore, it is essential to develop environmentally friendly pest control methods to address this problem. Behavior-modifying chemicals, including male attractants and intersex protein baits, play a critical role in the control of B. dorsalis. The mature host fruit serves as both an oviposition site and food source under natural conditions, making it a potential attraction source for oriental fruit flies. Orange, Citrus sinensis, is a main host of B. dorsalis, and commercial orange juice is a common attractant for the egg laying of B. dorsalis. Although it can both attract and elicit oviposition behaviors in B. dorsalis adults, its active components are still unclear. This study utilized analytical chemistry, behavioral tests, and electrophysiology to identify the active components of commercial orange juice that attract B. dorsalis, with the aim of providing a reference for the development of behavior-modifying chemical-based techniques to control B. dorsalis. Five compounds with a high abundance were identified via a GC-MS, including D-Limonene, butanoic acid ethyl ester, ß-myrcene, linalool, and α-terpineol. Behavioral and electrophysiological experiments uncovered that D-Limonene was the active substance that was the main attractant in the mixture of these five substances, evoking a strong electrophysiological response in adult B. dorsalis. D-Limonene strongly attracts adult B. dorsalis only when they are sexually mature, and the attraction is not rhythmic. Olfaction plays a leading role in the attraction of D-Limonene to adult B. dorsalis, and Orco-/- mediates the perception of D-Limonene by B. dorsalis. Overall, D-Limonene is one of the key attractant compounds for B. dorsalis in the volatile compounds of commercial orange juice, offering possible support for the development of behavior-modifying chemical-based technology to control B. dorsalis in the future.

14.
Science ; 384(6703): 1453-1460, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38870272

RESUMEN

Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.


Asunto(s)
Acetatos , Áfidos , Proteínas de Insectos , Receptores Odorantes , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Animales , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Áfidos/química , Acetatos/química , Acetatos/metabolismo , Ligandos , Terpenos/química , Terpenos/metabolismo , Odorantes/análisis , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Activación del Canal Iónico , Microscopía por Crioelectrón , Monoterpenos Acíclicos
15.
Eur J Immunol ; 54(8): e2350796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922884

RESUMEN

Tuberculosis (TB) was the leading cause of death from a single infectious agent before the coronavirus pandemic. Therefore, it is important to search for severity biomarkers and devise appropriate therapies. A total of 139 pulmonary TB (PTB) patients and 80 healthy controls (HCs) were recruited for plasma soluble CD137 (sCD137) detection through ELISA. Moreover, pleural effusion sCD137 levels were measured in 85 TB patients and 36 untreated lung cancer patients. The plasma cytokine levels in 64 patients with PTB and blood immune cell subpopulations in 68 patients with PTB were analysed via flow cytometry. Blood sCD137 levels were higher in PTB patients (p = 0.012) and correlated with disease severity (p = 0.0056). The level of sCD137 in tuberculous pleurisy effusion (TPE) was markedly higher than that in malignant pleurisy effusion (p = 0.018). Several blood cytokines, such as IL-6 (p = 0.0147), IL-8 (p = 0.0477), IP-10 (p ≤ 0.0001) and MCP-1 (p = 0.0057), and some laboratory indices were significantly elevated in severe PTB (SE) patients, but the percentages of total lymphocytes (p = 0.002) and cytotoxic T cells (p = 0.036) were significantly lower in SE patients than in non-SE patients. In addition, the sCD137 level was negatively correlated with the percentage of total lymphocytes (p = 0.0008) and cytotoxic T cells (p = 0.0021), and PTB patients with higher plasma sCD137 levels had significantly shorter survival times (p = 0.0041). An increase in sCD137 is a potential biomarker for severe TB and indicates a poor prognosis.


Asunto(s)
Biomarcadores , Índice de Severidad de la Enfermedad , Tuberculosis Pulmonar , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Humanos , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/sangre , Adulto , Biomarcadores/sangre , Anciano , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/mortalidad , Citocinas/sangre , Tuberculosis Pleural/inmunología , Tuberculosis Pleural/sangre , Tuberculosis Pleural/diagnóstico , Tuberculosis Pleural/mortalidad
16.
Insect Sci ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863245

RESUMEN

The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.

17.
Heliyon ; 10(11): e31901, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845879

RESUMEN

Molecular techniques of nucleic acid testing recommended by the World Health Organization (WHO) for the Mycobacterium tuberculosis (MTB) detection were considered to have the potential access to the accurate tuberculosis (TB) notifications. In this study, a new method, which coupled real-time (rt) fluorescence technique with multiple cross displacement amplification (MCDA), was developed for the rapid, sensitive and specific detection of MTB (termed MTB-rt-MCDA). According to the principle of the rt-MCDA test, a set of ten primers were designed for the MCDA reaction, of which one was engineered with a restrictive endonuclease recognition site, a fluorophore and a quencher for achieving the real-time fluorescence detection. MTB-rt-MCDA test was conducted under the optimized conditions (67 °C, 40 min) on the real-time fluorescence platform. The MTB-rt-MCDA assay accurately identified the MTB strains with no cross reaction with other bacteria. The lowest detectable genomic DNA concentration of the MTB-rt-MCDA assay was 25 fg/µl. We employed the genomic DNA templates extracted from sputum of clinical cases for validating the practical applicability of this assay, and the detection power of the MTB-rt-MCDA assay was comparable to that of the Xpert method and MCDA-based biosensor detection and superior to smear microscope method. The complete process of the MTB-rt-MCDA assay, including rapid extraction of DNA and rt-MCDA test, takes less than 1 h. In conclusion, the presented MTB-rt-MCDA assay provided an effective and simple option for the rapid screening of MTB infection.

18.
Cell Mol Life Sci ; 81(1): 259, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878072

RESUMEN

Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.


Asunto(s)
Mariposas Nocturnas , Receptores de Feromonas , Atractivos Sexuales , Animales , Atractivos Sexuales/metabolismo , Atractivos Sexuales/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/fisiología , Receptores de Feromonas/metabolismo , Receptores de Feromonas/genética , Masculino , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Femenino , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Filogenia , Simulación de Dinámica Molecular , Conducta Sexual Animal/fisiología
19.
Insects ; 15(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786870

RESUMEN

UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs).

20.
J Chem Ecol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740727

RESUMEN

The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA