Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999632

RESUMEN

The two-spotted spider mite (Tetranychus urticae) is a constant threat to greenhouse strawberry production. The application of synthetic acaricides is the main method of controlling T. urticae. However, resistance development to traditional acaricides reduces their efficacy and eventually leads to control failure. It is important for strawberry growers to look for new acaricides and application technologies that can limit the harmfulness of T. urticae in environmentally friendly ways. In the current study, laboratory toxicity tests and field trials were performed to screen high-efficiency acaricides, and then application technologies were improved to enhance the management of T. urticae. In the laboratory toxicity tests, the results showed that the LC50 (median lethal concentration) value of cyetpyrafen, cyenopyrafen, cyflumetofen, bifenazate, abamectin, azocyclotin, pyridaben, spirodiclofen, and etoxazole against adult T. urticae was 0.226, 0.240, 0.415, 3.583, 5.531, 25.58, 39.69, 140.3, and 267.7 mg/L, respectively. In addition, the LC50 value of the nine acaricides against eggs of T. urticae was 0.082, 0.097, 0.931, 18.56, 25.52, 45.61, 36.32, 1.954, and 0.040 mg/L, respectively. The field trial results showed that the best control effect was obtained in cyetpyrafen at 300 mL/ha treatment. Cyetpyrafen was chosen for further application technology tests. In the spray volume tests, the results showed that increasing the spray volume from 900 to 1050 L/ha significantly improved the control of T. urticae. In addition, the results from the spray instrument tests demonstrated that the control effects on T. urticae in the ozone spray treatments were significantly higher than those of the conventional and electrostatic sprays 1 and 3 days after treatment (DAT). Therefore, this study suggested that cyetpyrafen effectively controlled T. urticae both in the laboratory tests and in the field trials. Increasing the spray volume and application of ozone spray significantly improved T. urticae management.

2.
Cytokine ; 181: 156670, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901264

RESUMEN

Cytokines may related to intrauterine Hepatitis B virus (HBV) transmission. 205 HBsAg(+) pregnant cases and 74 HBsAg(-) women were included. Neonatal blood samples were taken within 24 h of delivery and before HBV vaccinations. Serological HBV biomarkers and cytokines were detected. 21.9 % of the newborns from HBsAg(+) women were intrauterinally transmitted, including 7.3 % with dominant transmission (DBT) and 14.6 % occult transmission (OBT). HBV DNA load (odd ratio [OR], 1.44; 95 % confidence interval [CI], 1.05-1.98), interferon-γ (IFN-γ) (OR, 1.01; 95 %CI, 1.00-1.02) and toll-like receptor 9 (TLR9) (OR, 1.27; 95 %CI, 1.06-1.52) positively correlated with DBT. Only IFN-γ (OR, 1.01; 95 %CI, 1.00-1.01) positively associated with OBT. According to the generated restricted cubic spline, TLR9 was positively correlates with rise of DBT in a log-shape. It may be possible to develop a nomogram which intercalates these factors to predict intrauterine HBV transmissions. Further research should consider immune processes involved in chorioamnionitis.

3.
Plant Physiol Biochem ; 212: 108788, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830276

RESUMEN

Identifying green and effective measures for reducing wheat Cd toxicity and grain Cd accumulation is crucial. This study used seedling sand culture and full-grown pot experiments of wheat cultivars 'Luomai23' (LM) and 'Zhongyu10' (ZY). The purpose was to determine the effects of exogenous MeJA on the phenotype, photosynthesis, antioxidant system, Cd accumulation and distribution, transporter gene expression, and cell wall properties of Cd-stressed wheat. Compared with Cd treatment alone, the plant height and maximum root length treated with 0.001 µM MeJA increased by more than 6.3% and 16.6%, respectively. Under 5 mg⋅kg-1 Cd treatment, spraying 10 µM MeJA increased the photosynthetic rate of LM and ZY by 23.5% and 35.8% at the filling stage, respectively. Methyl jasmonate significantly reduced the H2O2 and MDA contents by increasing the activities of POD, DHAR, MDHAR, and GR and the contents of AsA and GSH. Applicating MeJA increased the content of chelate substances, cell wall polysaccharides, and cell wall functional groups. Besides, MeJA regulated the expression of Cd transporter genes, with shoot and root Cd content decreasing by 46.7% and 27.9% in LM, respectively. Spraying 10 µM MeJA reduced Cd absorption and translocation from vegetative organs to grains, thus reducing the grain Cd content of LM and ZY by 36.1 and 39.9% under 5 mg⋅kg-1 Cd treatment, respectively. Overexpressing TaJMT significantly increased the MeJA content and Cd tolerance of Arabidopsis. These results have improved the understanding of the mechanism through which MeJA alleviates Cd toxicity and reduces Cd accumulation in wheat.


Asunto(s)
Acetatos , Antioxidantes , Cadmio , Ciclopentanos , Oxilipinas , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/genética , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Acetatos/farmacología , Cadmio/metabolismo , Cadmio/toxicidad , Antioxidantes/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
ACS Omega ; 9(23): 24880-24888, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882101

RESUMEN

In the maritime setting, Proton Exchange Membrane Fuel Cells (PEMFCs) are subjected to salt spray, posing a risk of contaminating internal components and leading to irreversible degradation in the performance of the PEMFCs. Thus, it is crucial to assess the impact of sodium chloride contamination on PEMFC operation. To address challenges related to prolonged cycle times, high costs, and intricate sample preparation in sodium chloride contamination experiments for PEMFCs, this Article replicates the marine atmospheric conditions using a standard salt spray experimental chamber. The liquid nitrogen fracture method is employed for cost-effective and efficient preparation of experimental samples. The meteorological environment with varying salt content in the salt spray is achieved through precise control of sodium chloride concentration. The Article systematically presents the salt spray experimental method for the membrane electrode assembly (MEA) of PEMFCs. A dedicated salt spray experimental rig was constructed to validate this method for the MEA of PEMFCs. The results indicate that the salt spray experimental method for the MEA of PEMFCs can effectively explore internal component contamination and is well-suited for analyzing the physicochemical effects of NaCl on MEA components, along with their microscopic characterization under salt spray conditions.

5.
Animals (Basel) ; 14(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38891713

RESUMEN

Appropriate soluble carbohydrate (SCHO)-to-NDF ratios in the diet are essential for rumen health. The effects of different SCHO-to-NDF ratios (1.0, 1.5, and 2.0) on rumen barrier function and inflammation in Dumont lambs (n = 18, 6 replicates per treatment) was investigated. The SCHO:NDF ratio was altered by replacing the forage (Leynus chinensis) with corn grain. With an increase in the proportion of SCHO, the final body weight (FBW), average daily gain (ADG), soluble carbohydrate intake (SCHOI), and LPS level increased; and the neutral detergent fiber intake (NDFI), ruminal papillae height, papillae area, and pH decreased (p < 0.05, plin < 0.05). The medium CHO:NDF group had increased claudin-1 mRNA (p < 0.05, plin = 0.005, pquad = 0.003) and protein (p < 0.05, pquad < 0.001) levels; the high CHO:NDF group had increased occludin mRNA and protein (p < 0.05, plin = 0.001) levels. The level of the anti-inflammatory cytokine IL-10 was significantly greater in the medium CHO:NDF group than in the high CHO:NDF group (p < 0.05, pquad < 0.001). With an increase in the ratio of SCHO, the mRNA level and concentration of the proinflammatory cytokines IL-1ß, IL-6, and TNF-α linearly increased (p < 0.05, plin < 0.05), and those in the high CHO:NDF group were significantly greater than those in the low CHO:NDF group. The levels of phosphorylated p65 (plin = 0.003), IκB-α (plin < 0.001), and JNK (plin = 0.001) increased linearly, and those in the high CHO:NDF group were significantly greater than those in the other two groups (p < 0.05). Therefore, when the SCHO-to-NDF ratio was increased to 1.5, the rumen epithelium was not affected, but when the ratio was increased to 2.0, NF-κB and MAPK were activated in the rumen epithelium, leading to impaired barrier function and inflammation. The suitable NFC:NDF ratio for the short-term fattening of Dumont lambs was found to be 1.50.

6.
J Environ Manage ; 360: 121130, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772232

RESUMEN

Good site characterization is essential for the selection of remediation alternatives for impacted soils. The value of site characterization is critically dependent on the quality and quantity of the data collected. Current methods for characterizing impacted soils rely on expensive manual sample collection and off-site analysis. However, recent advances in terrestrial robotics and artificial intelligence offer a potentially revolutionary set of tools and methods that will help to autonomously explore natural environments, select sample locations with the highest value of information, extract samples, and analyze the data in real-time without exposing humans to potentially hazardous conditions. A fundamental challenge to realizing this potential is determining how to design an autonomous system for a given investigation with many, and often conflicting design criteria. This work presents a novel design methodology to navigate these criteria. Specifically, this methodology breaks the system into four components - sensing, sampling, mobility, and autonomy - and connects design variables to the investigation objectives and constraints. These connections are established for each component through a survey of existing technology, discussion of key technical challenges, and highlighting conditions where generality can promote multi-application deployment. An illustrative example of this design process is presented for the development and deployment of a robotic platform characterizing salt-impacted oil & gas reserve pits. After calibration, the relationship between the in situ robot chloride measurements and laboratory-based chloride measurements had a good linear relationship (R2-value = 0.861) and statistical significance (p-value = 0.003).


Asunto(s)
Robótica , Suelo , Suelo/química , Monitoreo del Ambiente/métodos , Inteligencia Artificial
7.
Front Endocrinol (Lausanne) ; 15: 1379693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808114

RESUMEN

Background: Increased maternal cortisol secretion has been observed during pregnancy and labor. However, due to the limitations in diagnostic methods, the dynamic change of cortisol during the short period between threatened labor and labor is unknown. In this study, we aim to evaluate the changes in serum cortisol during late pregnancy and full-term labor initiation, verifying if cortisol could serve as a biomarker for the diagnosis of labor initiation from threatened labor. Methods: This cross-sectional onsite study involved 564 participants of 6 different gestational stages (C: Control; T1: Trimester 1; T3: Trimester 3; E: expectant; TL: threatened labor; L: labor), all patients in the E, TL, and L groups were at full term. The serum cortisol concentration was quantified with a point-of-care test (POCT), and the gestation, age, parity, and BMI of participants were documented. Morning serum cortisol was collected between 8:00 and 10:00 a.m., except for the TL and L group women who were tested upon arrival or during latent labor. With cortisol levels or all five variables, L was distinguished from TL using machine learning algorithms. Results: Significant elevation of cortisol concentration was observed between T1 and T3, or TL and L group (P< 0.001). Women belonging to the E and TL group showed similar gestation week and cortisol levels. Diagnosis of labor initiation using cortisol levels (cutoff = 21.46 µg/dL) yielded sensitivity, specificity, and AUC of 86.50%, 88.60%, and 0.934. With additional variables, a higher specificity (89.29%) was achieved. The diagnostic accuracy of all methods ranged from 85.93% to 87.90%. Conclusion: Serum cortisol could serve as a potential biomarker for diagnosis of L form TL. The rapid onsite detection of serum cortisol with POCT could facilitate medical decision-making for admission and special treatments, either as an additional parameter or when other technical platforms are not available.


Asunto(s)
Biomarcadores , Hidrocortisona , Humanos , Femenino , Embarazo , Estudios Transversales , Hidrocortisona/sangre , Adulto , Biomarcadores/sangre , Trabajo de Parto/sangre , Inicio del Trabajo de Parto/sangre , Adulto Joven , Edad Gestacional
8.
PLoS One ; 19(4): e0299267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568950

RESUMEN

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Medicina de Precisión , Heterogeneidad Genética , Imagen por Resonancia Magnética/métodos , Algoritmos , Aprendizaje Automático , Máquina de Vectores de Soporte , Receptores ErbB/genética
9.
Res Sq ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585856

RESUMEN

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.

10.
Spine J ; 24(7): 1282-1292, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583576

RESUMEN

BACKGROUND CONTEXT: Adolescent idiopathic scoliosis (AIS) necessitates accurate spinal curvature assessment for effective clinical management. Traditional two-dimensional (2D) Cobb angle measurements have been the standard, but the emergence of three-dimensional (3D) automatic measurement techniques, such as those using weight-bearing 3D imaging (WR3D), presents an opportunity to enhance the accuracy and comprehensiveness of AIS evaluation. PURPOSE: This study aimed to compare traditional 2D Cobb angle measurements with 3D automatic measurements utilizing the WR3D imaging technique in patients with AIS. STUDY DESIGN/SETTING: A cohort of 53 AIS patients was recruited, encompassing 88 spinal curves, for comparative analysis. PATIENT SAMPLE: The patient sample consisted of 53 individuals diagnosed with AIS. OUTCOME MEASURES: Cobb angles were calculated using the conventional 2D method and three different 3D methods: the Analytical Method (AM), the Plane Intersecting Method (PIM), and the Plane Projection Method (PPM). METHODS: The 2D cobb angle was manually measured by 3 experienced clinicians with 2D frontal whole-spine radiographs. For 3D cobb angle measurements, the spine and femoral heads were segmented from the WR3D images using a 3D-UNet deep-learning model, and the automatic calculations of the angles were performed with the 3D slicer software. RESULTS: AM and PIM estimates were found to be significantly larger than 2D measurements. Conversely, PPM results showed no statistical difference compared to the 2D method. These findings were consistent in a subgroup analysis based on 2D Cobb angles. CONCLUSION: Each 3D measurement method provides a unique assessment of spinal curvature, with PPM offering values closely resembling 2D measurements, while AM and PIM yield larger estimations. The utilization of WR3D technology alongside deep learning segmentation ensures accuracy and efficiency in comparative analyses. However, additional studies, particularly involving patients with severe curves, are required to validate and expand on these results. This study emphasizes the importance of selecting an appropriate measurement method considering the imaging modality and clinical context when assessing AIS, and it also underlines the need for continuous refinement of these techniques for optimal use in clinical decision-making and patient management.


Asunto(s)
Imagenología Tridimensional , Escoliosis , Humanos , Escoliosis/diagnóstico por imagen , Adolescente , Imagenología Tridimensional/métodos , Femenino , Masculino , Soporte de Peso , Columna Vertebral/diagnóstico por imagen , Niño , Radiografía/métodos
11.
Biol Trace Elem Res ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683269

RESUMEN

The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.

12.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636893

RESUMEN

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Asunto(s)
Proteínas de Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proliferación Celular , Ratones Desnudos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pronóstico
13.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642079

RESUMEN

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Asunto(s)
Hiperplasia , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma , Factor 5 Asociado a Receptor de TNF , Animales , Macrófagos/metabolismo , Factor 5 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Ratones , Humanos , Arterias Carótidas/patología , Neointima/patología , Neointima/metabolismo , Interleucina-4/genética , Células Cultivadas , Túnica Íntima/patología , Lipopolisacáridos/farmacología
14.
J Colloid Interface Sci ; 662: 460-470, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364471

RESUMEN

The search for highly efficient and inexpensive electrocatalysts is crucial to the advancement of environmentally friendly and sustainable energy sources. Here, adopting a one-step hydrothermal method, we have effectively fabricated a self-supported multi-metal molybdenum-based oxide (FeCoNi-MoO4) on nickel foam (NF). In addition to changing the catalyst's microstructure, the introducing of Fe and Co, enhanced its active center count, improved its electronic structure, and in turn reduced the difficulty for high-valence Ni and Fe species to form, which accelerates the oxygen evolution reaction (OER) kinetics by promoting the development of the actual active materials, NiOOH and FeOOH. FeCoNi-MoO4 has outstanding OER performance, requiring just 204 mV overpotentials at 10 mA cm-2 and 271 mV at 100 mA cm-2. Its exceptional OER kinetics at both low and high currents are indicated by a Tafel slope of 50.6 mV dec-1, which is attributed to the combined effect of its multi-metal composition and a higher number of active sites. Moreover, the FeCoNi-MoO4 electrode was operated continuously for over 48 h. Furthermore, the density functional theory (DFT) results demonstrated that the introducing of Fe and Co, which quickens the rate of electron transfer during the electrocatalytic process, improves the ability of oxygen intermediate species to adsorb, and ultimately lowers the overpotential, is responsible for the increased electrocatalytic activity of FeCoNi-MoO4. This work offers hope for further developments in the sector by proposing an efficient approach for creating multi-active electrocatalysts that are stable, economical, and efficient.

15.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365636

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Proteínas que Contienen Bromodominio , Glioblastoma , Animales , Niño , Humanos , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas que Contienen Bromodominio/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudios Prospectivos , Sindecano-1/antagonistas & inhibidores , Factores de Transcripción/genética
16.
Ecotoxicol Environ Saf ; 273: 116114, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367608

RESUMEN

The composition of particulate matter (PM) in poultry farms differs significantly from that of atmospheric PM as there is a higher concentration of microbes on farms. To assess the health effects of PM from poultry farms on pregnant animals, we collected PM from duck houses using a particulate sampler, processed it via centrifugation and vacuum concentration, and subsequently exposed the mice to airborne PM at 0.48 mg/m3 (i.e., low concentration group) and 1.92 mg/m3 (i.e., high concentration group) on the fifth day of pregnancy. After exposure until the twentieth day of pregnancy or spontaneous delivery, mice were euthanized for sampling. The effects of PM from duck houses on the pregnancy toxicity of mice were analyzed using histopathological analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qPCR). The results showed that exposure to PM had adverse effects on pregnant mice that reduced their feed intake in both groups. Microscopic lesions were observed in the lungs and placentas of pregnant mice, and the lesions worsened with increased PM concentrations, as shown by alveolar wall thickening, the infiltration of inflammatory cells in pulmonary interstitium, congestion, edema, and cellular degeneration of placenta. In pregnant mice in the high concentration group, exposure to PM significantly increased the expression of inflammatory cytokines in the lungs and placentas, caused oxidative stress, and decreased estrogen level in the blood. Exposure to PM also resulted in the reduced litter sizes of pregnant mice and shorter body and tail lengths in the fetuses delivered. Beyond that, exposure to PM significantly downregulated the levels of antioxidant factor superoxide dismutase and neurotrophic factor Ngf in the brains of fetuses. Collectively, exposure to a high concentration of PM by inhalation among pregnant mice caused significant pregnancy toxicity that led to abnormal fetal development due to inflammatory damage and oxidative stress. These findings established a foundation for future studies on the underlying mechanisms of pregnancy toxicity induced by exposure to PM.


Asunto(s)
Patos , Material Particulado , Humanos , Embarazo , Femenino , Ratones , Animales , Material Particulado/toxicidad , Material Particulado/análisis , Patos/metabolismo , Exposición Materna/efectos adversos , Desarrollo Fetal , Estrés Oxidativo
17.
Animals (Basel) ; 14(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254353

RESUMEN

The purpose of this study was to determine the effects of Sophora alopecuroides (SA) on liver function, liver inflammatory factor levels, antioxidant indexes and transcriptome in sheep. Twenty-four 3-month-old healthy Dumont hybrid lambs weighing 25.73 ± 2.17 kg were randomly divided into three groups: C1 (the control group), fed a concentrate-to-forage ratio of 50:50; H2 (the high-concentration group), fed a concentrate-to-forage ratio of 70:30; and S3 (the SA group), fed a concentrate-to-forage ratio of 70:30 + 0.1% SA. The results showed that the rumen pH values of the C1 and S3 groups were significant or significantly higher than that of the H2 group (p < 0.05 or p < 0.01). The serum ALT, AST and LDH activities and the LPS and LBP concentrations in the sheep serum and liver in the H2 group were significantly or extremely significantly higher than those in the C1 and S3 groups (p < 0.01), and the IL-10 content and SOD, GPX-PX and T-AOC activities showed the opposite trend (p < 0.05 or p < 0.01). KEGG enrichment analysis showed that the differentially expressed genes were significantly enriched in the ECM-receptor interaction and focal adhesion pathways, which are closely related to immune and antioxidant functions (p-adjust < 0.1). In summary, SA could improve the immune and antioxidant functions of lamb livers under high-concentrate conditions and regulate the mechanism of damage on sheep livers, which is caused by high-concentrate diets and through the expression of related genes in the ECM/FAs pathway.

18.
Adv Mater ; 36(15): e2311073, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38199249

RESUMEN

Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.

19.
Microb Pathog ; 188: 106549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281605

RESUMEN

The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.


Asunto(s)
Coccidiosis , Eimeria tenella , Enfermedades de las Aves de Corral , Animales , Eimeria tenella/química , Eimeria tenella/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Pollos , Proteínas Protozoarias , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Recombinantes , Esporozoítos/metabolismo , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/parasitología
20.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 353-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37148307

RESUMEN

BACKGROUND: Relapse remains the major challenge in treatment of alcohol use disorder (AUD). Aberrant decision-making has been found as important cognitive mechanism underlying relapse, but factors associated with relapse vulnerability are unclear. Here, we aim to identify potential computational markers of relapse vulnerability by investigating risky decision-making in individuals with AUD. METHODS: Forty-six healthy controls and fifty-two individuals with AUD were recruited for this study. The risk-taking propensity of these subjects was investigated using the balloon analog risk task (BART). After completion of clinical treatment, all individuals with AUD were followed up and divided into a non-relapse AUD group and a relapse AUD group according to their drinking status. RESULTS: The risk-taking propensity differed significantly among healthy controls, the non-relapse AUD group, and the relapse AUD group, and was negatively associated with the duration of abstinence in individuals with AUD. Logistic regression models showed that risk-taking propensity, as measured by the computational model, was a valid predictor of alcohol relapse, and higher risk-taking propensity was associated with greater risk of relapse to drink. CONCLUSION: Our study presents new insights into risk-taking measurement and identifies computational markers that provide prospective information for relapse to drink in individuals with AUD.


Asunto(s)
Alcoholismo , Humanos , Estudios Prospectivos , Alcoholismo/psicología , Etanol , Consumo de Bebidas Alcohólicas/psicología , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA