Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
ChemMedChem ; : e202400467, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302251

RESUMEN

DNA methyltransferase 1 (DNMT1) is an attractive therapeutic target for acute myelocytic leukemia (AML) and other malignancies. It has been reported that the genetic depletion of DNMT1 inhibited AML cell proliferation through reversing DNA methylation abnormalities. However, no DNMT1-targeted PROTAC degraders have been reported yet. Herein, a series of proteolysis-targeting chimera (PROTAC) degrader of DNMT1 based on dicyanopyridine scaffold and VHL E3 ubiquitin ligase ligand was developed. Among them, KW0113 (DC50 = 643/899 nM in MV4-11/MOLM-13 cells) exhibited optimal DNMT1 degradation. KW0113 induced DNMT1-selective degradation in a dose- and time-dependent manner through VHL engagement. Moreover, KW0113 inhibited AML cell growth by reversing promoter DNA hypermethylation and tumor-suppressor genes silencing. In conclusion, these findings proved the capability of PROTAC strategy for inducing DNMT1 degradation, demonstrated the therapeutic potential of DNMT1-targeted PROTACs. This work also provided a convenient chemical knockdown tool for DNMT1-related studies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39279407

RESUMEN

The cross-sectional association between self-compassion and coping self-efficacy has been well documented, but little is known about the extent to which self-compassion or coping self-efficacy persists in daily life. This study used dynamic structural equation modeling to explore the temporal relationship between self-compassion and coping self-efficacy through a daily diary study. Participants (N = 240, Mage = 18.98 ± 0.99 years, 44.8% female) completed 14 consecutive daily diaries on self-compassion and coping self-efficacy (for a total of 3219 observations). We found that self-compassion and coping self-efficacy demonstrated stability through autocorrelations. Self-compassion was a significant predictor of subsequent coping self-efficacy, and coping self-efficacy was a significant predictor of subsequent self-compassion. These findings suggest that there has been a virtuous cycle between state coping self-efficacy and state self-compassion.

3.
Plant Mol Biol ; 114(5): 101, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312030

RESUMEN

Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.


Asunto(s)
Ácido Abscísico , Sequías , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Estrés Fisiológico/genética , Ácidos Indolacéticos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
4.
Food Chem ; 463(Pt 1): 141057, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236388

RESUMEN

Interesting variations in the analyte content were observed in chicken samples contaminated with tetracycline antibiotics (TCs) following pretreatment with various enzymatic hydrolysis before quantification by conventional analytical methods. Compared with untreated samples, the detectable contents of three TCs in protease-treated samples were 1.51 to 2.05 times higher, whereas lipase treatment did not significantly influence the contents. The marked changes following protease treatment confirmed the presence of protein-associated antibiotics. Infrared spectroscopy analysis indicated that the formation of protein-bound antibiotics resulted from non-covalent interactions between TCs and proteins. Further dissociation experiments determined that the intermolecular forces involved hydrogen bonding, hydrophobic interactions, and electrostatic attraction. Molecular docking substantiated these forces and detailed the binding mechanism at the molecular level. Moreover, the masking effect of protein binding on the determination of TCs was also evidenced in an additional 30 positive chicken samples, suggesting that the actual residue levels of TCs in protein-rich foodstuffs are underestimated.

5.
Front Cell Dev Biol ; 12: 1431173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224435

RESUMEN

During the metamorphosis of anuran amphibians, the tail resorption process is a necessary and crucial change. One subject that has received relatively little or no attention is the expression patterns of proteins and metabolites in the different tail portions during metamorphosis, especially in highland amphibians. The mechanisms of tail resorption in three portions (the tip, middle and root) of the tail were investigated in N. pleskei G43 tadpole based on two omics (proteomic and metabolomic). Integrin αVß3 was found to be high expressed in the distal portion of the tail, which could improve the sensitiveness to thyroid hormones in the distal portion of the tail. Muscle regression displayed a spatial pattern with stronger regression in distal and weaker one in proximal portion. Probably, this stronger regression was mainly performed by the proteases of proteasome from the active translation by ribosomes. The suicide model and murder model coexisted in the tail resorption. Meanwhile, fatty acids, amino acids, pyrimidine, and purine which derived from the breakdown of tissues can be used as building blocks or energy source for successful metamorphosis. Our data improved a better comprehension of the tail resorption mechanisms underlying the metamorphism of N. pleskei tadpole through identifying important participating proteins and metabolites.

6.
Phytother Res ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243217

RESUMEN

Quercetin has shown potential antihypertensive-like activities in several studies. The present study aimed to test the effect of quercetin supplementation on kidney damage and long-term prognosis in hypertensive patients. The data of enrolled hypertensive patients were acquired from the NHANES dataset. The flavanol intake data was extracted from the FNDDS flavonoid database. Information regarding mortality was extracted from the NCHS. A total of 5801 hypertensive patients were included in this study. Preliminary analysis found that the total flavanols intake dosage was the independent influence factor of the kidney damage prevalence in hypertension, and it was found that only the quercetin supplementation was the protective factor for kidney damage after stratification analysis. For every 10 mg/d increase in quercetin intake, the kidney damage prevalence decreased by 8% [OR = 0.92, 95% CI: 0.85-0.99, p = 0.032]. The comprehensive analysis results suggested that hypertensive patients in the quercetin-high group had a lower kidney damage prevalence and a higher survival probability than those in the quercetin-low group. The urine microalbumin of hypertensive patients in the quercetin-high group was significantly lower than that of hypertensive patients in the quercetin-low group. In addition, at a median follow-up time of 122 months, the mortality decreased by 9% [HR = 0.91, 95% CI: 0.84-0.99, p = 0.031] for every 10 mg/d increase in quercetin intake. The findings suggested that high quercetin intake was associated with low kidney damage prevalence and high survival probability. Based on the existing evidence, promoting quercetin supplementation as a supplementary treatment for hypertensive patients was warranted.

7.
Water Sci Technol ; 89(2): 271-289, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39219130

RESUMEN

Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.


Asunto(s)
Nitrógeno , Fósforo , Humedales , Nitrógeno/metabolismo , Fósforo/química , Fósforo/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua , Purificación del Agua/métodos
8.
Sci Total Environ ; 951: 175419, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128520

RESUMEN

Organic matter (OM) accumulation in lake sediments has doubled owing to human activities over the past 100 years, which has negatively affected the restoration of submerged vegetation and ecological security. Changes in the pollution structure of sediments caused by plant recovery and rhizosphere chemical processes under different sediment OM levels are the theoretical basis for the rational application of plant rehabilitation technology in lake management. This study explored how Vallisneria natans mediates changes in sediment N and P through rhizospheric metabolites and microbial community and function under low (4.94 %) and high (17.35 %) sediment OM levels. V. natans promoted the accumulation of NH4-N in the high-OM sediment and the transformation of Fe/Al-P to Ca-P in the low-OM sediment. By analyzing 63 rhizospheric metabolites and the sediment microbial metagenome, the metabolites lactic acid and 3-hydroxybutyric acid and the genus Anammoximicrobium were found to mediate NH4-N accumulation in the high-OM sediment. Additionally, 3-hydroxy-decanoic acid, adipic acid, and the genus Bdellovibrionaceae mediated the transformation of Fe/Al-P to Ca-P in the low-OM sediment. The growth of V. natans enriched the abundance of functional genes mediating each step from nitrate to ammonia and the genes encoding urease in the high-OM sediment, and it up-regulated three genes related to microbial phosphorus uptake in the low-OM sediment. This study revealed the necessity of controlling endogenous pollution by recovering submerged macrophytes under high- and low-OM conditions from the perspective of the transformation of inorganic nitrogen and phosphorus.


Asunto(s)
Sedimentos Geológicos , Microbiota , Rizosfera , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Lagos , Fósforo/metabolismo , Nitrógeno/metabolismo , Restauración y Remediación Ambiental/métodos
9.
iScience ; 27(8): 110434, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108714

RESUMEN

Ovarian cancer is a highly lethal gynecological malignancy, emphasizing the need for effective treatment strategies. This study investigated the synergistic effects of quercetin and paclitaxel on ovarian cancer. Using SKOV3 and A2780 cell lines, we found that the combined treatment significantly enhanced cell apoptosis and inhibited invasion and migration compared to individual treatments. Then, we identified 32 common targets between quercetin/paclitaxel and ovarian cancer, with 29 genes showing differential expression between normal ovarian tissue and ovarian tumor tissue. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that quercetin and paclitaxel modulated cancer-related pathways in ovarian cancer treatment. Mechanistic analysis further discovered that the synergistic effect was mediated by downregulating ERBB2 and BIRC5 and upregulating CASP3 expression. This study provides strong evidence that quercetin enhances the effectiveness of paclitaxel in treating ovarian cancer.

10.
ACS Nano ; 18(33): 21651-21684, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39129497

RESUMEN

In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.

11.
Ann Rheum Dis ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164066

RESUMEN

OBJECTIVES: T helper 9 (Th9) cells are recognised for their characteristic expression of the transcription factor PU.1 and production of interleukin-9 (IL-9), which has been implicated in various autoimmune diseases. However, its precise relationship with rheumatoid arthritis (RA) pathogenesis needs to be further clarified. METHODS: The expression levels of PU.1 and IL-9 in patients with RA were determined by ELISA, western blotting (WB) and immunohistochemical staining. PU.1-T cell-conditional knockout (KO) mice, IL-9 KO and IL-9R KO mice were used to establish collagen antibody-induced arthritis (CAIA), respectively. The inhibitor of PU.1 and IL-9 blocking antibody was used in collagen-induced arthritis (CIA). In an in vitro study, the effects of IL-9 were investigated using siRNAs and IL-9 recombinant proteins. Finally, the underlying mechanisms were further investigated by luciferase reporter analysis, WB and Chip-qPCR. RESULTS: The upregulation of IL-9 expression in patients with RA exhibited a positive correlation with clinical markers. Using CAIA and CIA model, we demonstrated that interventions targeting PU.1 and IL-9 substantially mitigated the inflammatory phenotype. Furthermore, in vitro assays provided the proinflammatory role of IL-9, particularly in the hyperactivation of macrophages and fibroblast-like synoviocytes. Mechanistically, we uncovered that PU.1 and IL-9 form a positive feedback loop in RA: (1) PU.1 directly binds to the IL-9 promoter, activating its transcription and (2) Th9-derived IL-9 induces PU.1 via the IL-9R-JAK1/STAT3 pathway. CONCLUSIONS: These results support that the PU.1-IL-9 axis forms a positive loop in Th9 dysregulation of RA. Targeting this signalling axis presents a potential target approach for treating RA.

12.
Curr Med Imaging ; 20: e15734056307305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185661

RESUMEN

BACKGROUND: Alterations in ocular blood flow play an important role in the pathogenesis of diabetic macular edema; however, this remains unclear. OBJECTIVES: This study aimed to investigate ocular blood flow in eyes with or without diabetic macular edema using arterial spin labeling. METHODS: This cross-sectional study included 118 eyes of 65 patients with diabetic retinopathy analyzed between November 2018 and December 2019. We included a total of 53 eyes without diabetic macular edema (mean [SD] age, 57.83 [7.23] years; 29 men [54.7%]) and 65 eyes with diabetic macular edema (mean [SD] age, 60.11 [7.63] years; 38 men [58.5%]). Using a 3.0-T magnetic resonance imaging, participants were imaged with arterial spin labeling with multiple post-labeling delays. RESULTS: The mean ocular blood flow at post-labeling delays of 1.5 and 2.5 s was significantly lower in eyes with diabetic macular edema among patients with diabetic retinopathy compared with the remaining subgroups (P=0.022 and P <0.001, respectively). The mean ocular blood flow exhibited a significant decrease in eyes with diabetic macular edema when the post-labeling delay was set at 2.5 s in the nonproliferative and proliferative diabetic retinopathy groups, compared with the remaining subgroups (P=0.005 and P=0.002, respectively). The cutoff points of ocular blood flow at post-labeling delays of 1.5 s and 2.5 s were 9.40 and 11.10 mL/100 g/min, respectively. CONCLUSION: Three-dimensional pseudocontinuous arterial spin labeling can identify differences in the ocular blood flow of patients with diabetic eyes with and without diabetic macular edema.


Asunto(s)
Retinopatía Diabética , Edema Macular , Marcadores de Spin , Humanos , Edema Macular/diagnóstico por imagen , Edema Macular/fisiopatología , Masculino , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/fisiopatología , Persona de Mediana Edad , Estudios Transversales , Femenino , Anciano , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Flujo Sanguíneo Regional/fisiología , Ojo/irrigación sanguínea , Ojo/diagnóstico por imagen
13.
Cell Signal ; 122: 111333, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102928

RESUMEN

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.


Asunto(s)
Proteínas Portadoras , Cardiomiopatías Diabéticas , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Proteínas Portadoras/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , ARN Interferente Pequeño/metabolismo , Ratones Endogámicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo
14.
Nat Commun ; 15(1): 7431, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198424

RESUMEN

DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [FDR] <0.05), including three mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1) and four with causal evidence from Mendelian randomization (PRKCZ, TRIM27, EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (PIGG and EHBP1L1), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.


Asunto(s)
Síndrome Coronario Agudo , Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/sangre , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Estudios Prospectivos , Anciano , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , China/epidemiología , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Biomarcadores/sangre
15.
Free Radic Biol Med ; 224: 220-231, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39209135

RESUMEN

Vitamin D deficiency (VDD) has been found among alcoholics. However, little is known about the effect of VDD on alcoholic liver disease and the molecular mechanisms remain unclear. The aim of the current study was to evaluate whether vitamin D was deficient among patients with alcoholic fatty liver disease (AFLD) and the effect of VDD on chronic alcoholic liver injury and possible molecular mechanisms in mice. Our results found that lower 25-hydroxyvitamin D [25(OH)D] concentrations in patients with AFLD. And further analysis found that 25(OH)D is a protective factor in patients with AFLD. Mice experiments indicated that VDD can alter the composition of gut microbiota, down-regulate the protein levels of intestinal tight junction protein Occludin and E-cadherin, up-regulate the expression of inflammatory cytokines (tnf-α, il-1ß, il-6, il-8, ccl2, il-10) in liver and colon tissue. And further exacerbated the protein levels of p65,P-IκB,P-p65 in alcoholic liver injury mice. In conclusion, VDD aggravates chronic alcoholic liver injury by activating NF-κB signaling pathway.

16.
J Nanobiotechnology ; 22(1): 412, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997713

RESUMEN

The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.


Asunto(s)
Carbono , Glutatión , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Animales , Estrés Oxidativo/efectos de los fármacos , Carbono/química , Carbono/farmacología , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Puntos Cuánticos/química , Antioxidantes/farmacología , Masculino , Senescencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Catalasa/metabolismo , Catalasa/farmacología , Superóxido Dismutasa/metabolismo
17.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998235

RESUMEN

Twin-roll strip casting (TRSC) technology has unique advantages in the production of non-oriented electrical steel. However, the hot deformation behavior of high-grade electrical steel produced by TRSC has hardly been reported. This work systematically studied the hot deformation behavior of free-Al 2.43 wt.% Si electrical steel strip produced by twin-roll strip casting. During the simulated hot rolling test, deformation reduction was set as 30%, and the ranges of deformation temperature and strain rate were 750~950 °C and 0.01~5 s-1, respectively. The obtained true stress-strain curves show that the peak true stress decreased with an increase in the deformation temperature and with a decrease in the strain rate. Then, the effect of hot deformation parameters on microstructure and texture was analyzed using optical microstructure observation, X-ray diffraction, and electron backscattered diffraction examination. In addition, based on the obtained true stress-strain curves of the strip cast during hot deformation, the constitutive equation for the studied silicon steel strip was established, from which it can be found that the deformation activation energy of the studied steel strip is 83.367 kJ/mol. Finally, the kinetics model of dynamic recrystallization for predicting the recrystallization volume percent was established and was verified by a hot rolling experiment conducted on a rolling mill.

18.
Chemphyschem ; : e202400595, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034292

RESUMEN

Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( ++ or -+ ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic Ra to Sa to Ra to Sa etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( ++ , -+ , +- , -- ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the ++ and -- as well as the +- and -+ combinations generate opposite electronic enantiomers, e. g. Ra versus Sa, followed by opposite periodic chirality flips, e.g. form Ra to Sa to Ra to Sa  etc. versus form Sa to Ra to Sa to Ra  etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.

19.
Langmuir ; 40(29): 15178-15187, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990178

RESUMEN

Demulsification of crude oil emulsion is an obvious problem in the whole of petroleum engineering, which needs to be dealt with urgently. In this paper, a supramolecular material Cucurbit[7]uril-SiO2 (CB-SiO2) synthesized with excellent demulsification efficiency (DE) on O/W emulsion was synthesized by a simple thermal synthesis method. The microscopic morphology and structure were investigated through modern characterization techniques. Furthermore, its stability, dynamic interfacial tension (IFT), and wettability (three-phase contact angle (CA)) were systematically investigated, and the demulsification efficiency of different conditions on crude oil emulsion was also investigated. Reassuringly, these results showed that when the temperature was 70 °C, the demulsification dosage was close to 600 mg/L and remained unchanged for 90 min; the demulsification efficiency is 2.2 times compared with the unmodified material, up to 93.63%. In addition, a plausible demulsification mechanism was proposed, which is that CB-SiO2 can adsorb and disrupt the oil-water interface, leading to oil-water separation and promoting demulsification. It is a promising demulsification material for the oil industry demulsification.

20.
BMC Gastroenterol ; 24(1): 219, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977953

RESUMEN

PURPOSE: There is a lack of adequate models specifically designed for elderly patients with severe acute pancreatitis (SAP) to predict the risk of death. This study aimed to develop a nomogram for predicting the overall survival of SAP in elderly patients. METHODS: Elderly patients diagnosed with SAP between January 1, 2017 and December 31, 2022 were included in the study. Risk factors were identified through least absolute shrinkage and selection operator regression analysis. Subsequently, a novel nomogram model was developed using multivariable logistic regression analysis. The predictive performance of the nomogram was evaluated using metrics such as the receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA). RESULTS: A total of 326 patients were included in the analysis, with 260 in the survival group and 66 in the deceased group. Multivariate logistic regression indicated that age, respiratory rate, arterial pH, total bilirubin, and calcium were independent prognostic factors for the survival of SAP patients. The nomogram demonstrated a performance comparable to sequential organ failure assessment (P = 0.065). Additionally, the calibration curve showed satisfactory predictive accuracy, and the DCA highlighted the clinical application value of the nomogram. CONCLUSION: We have identified key demographic and laboratory parameters that are associated with the survival of elderly patients with SAP. These parameters have been utilized to create a precise and user-friendly nomogram, which could be an effective and valuable clinical tool for clinicians.


Asunto(s)
Nomogramas , Pancreatitis , Humanos , Anciano , Femenino , Masculino , Estudios Retrospectivos , Pancreatitis/mortalidad , Pancreatitis/diagnóstico , Factores de Riesgo , Pronóstico , Anciano de 80 o más Años , Centros de Atención Terciaria , Curva ROC , Factores de Edad , Modelos Logísticos , Índice de Severidad de la Enfermedad , Enfermedad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA