Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410494, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007424

RESUMEN

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

2.
ACS Nano ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007545

RESUMEN

The development of cost-efficient, long-lifespan, and all-climate sodium-ion batteries is of great importance for advancing large-scale energy storage but is plagued by the lack of suitable cathode materials. Here, we report low-cost Na-rich Mn-based Prussian blue analogues with superior rate capability and ultralong cycling stability over 10,000 cycles via structural optimization with electrochemically inert Ni atoms. Their thermal stability, all-climate properties, and potential in full cells are investigated in detail. Multiple in situ characterizations reveal that the outstanding performances benefit from their highly reversible three-phase transformations and trimetal (Mn-Ni-Fe) synergistic effects. In addition, a high sodium diffusion coefficient and a low volume distortion of 2.3% are observed through in situ transmission electron microscopy and first-principles calculations. Our results provide insights into the structural engineering of Prussian blue analogues for advanced sodium-ion batteries in large-scale energy storage applications.

3.
Chemistry ; : e202304106, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083260

RESUMEN

Sodium-oxygen batteries have been regarded as promising energy storage devices due to their low overpotential and high energy density. Its applications, however, still face formidable challenges due to the lack of understanding about the influence of electrocatalysts on the discharge products. Here, a phosphorous and nitrogen dual-doped carbon (PNDC) based cathode is synthesized to increase the electrocatalytic activity and to stabilize the NaO2 superoxide nanoparticle discharge products, leading to enhanced cycling stability when compared to the nitrogen-doped carbon (NDC). The PNDC air cathode exhibits a low overpotential (0.36 V) and long cycling stability (120 cycles). The reversible formation/decomposition and stabilization of the NaO2 discharge products are clearly proven by in-situ synchrotron X-ray diffraction and ex-situ X-ray diffraction. Based on the density functional theory calculation, the PNDC has much stronger adsorption energy (-2.85 eV) for NaO2 than that of NDC (-1.80 eV), which could efficiently stabilize the NaO2 discharge products.

4.
Sci Rep ; 14(1): 16832, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039146

RESUMEN

The aim of this study is to assess the effectiveness of conventional and two additional functional markers derived from standard cardiac magnetic resonance (CMR) images in detecting the occurrence of late gadolinium enhancement (LGE) in patients with secondary cardiac amyloidosis (CA) related to multiple myeloma (MM). This study retrospectively included 32 patients with preserved ejection fraction (EF) who had MM-CA diagnosed consecutively. Conventional left ventricular (LV) function markers and two additional functional markers, namely myocardial contraction fraction (MCF) and LV long-axis strain (LAS), were obtained using commercial cardiac post-processing software. Logistic regression analyses and receiver operating characteristic (ROC) analysis were performed to evaluate the predictive performances. (1) There were no notable distinctions in clinical features between the LGE+ and LGE- groups, with the exception of a reduced systolic blood pressure in the former (105.60 ± 18.85 mmHg vs. 124.50 ± 20.95 mmHg, P = 0.022). (2) Patients with MM-CA presented with intractable heart failure with preserved ejection fraction (HFpEF). The LVEF in the LGE+ group exhibited a greater reduction (54.27%, IQR 51.59-58.39%) in comparison to the LGE- group (P < 0.05). And MM-CA patients with LGE+ had significantly higher LVMI (90.15 ± 23.69 g/m2), lower MCF (47.39%, IQR 34.28-54.90%), and the LV LAS were more severely damaged (- 9.94 ± 3.42%) than patients with LGE- (all P values < 0.05). (3) The study found that MCF exhibited a significant independent association with LGE, as indicated by an odds ratio of 0.89 (P < 0.05). The cut-off value for MCF was determined to be 64.25% with a 95% confidence interval ranging from 0.758 to 0.983. The sensitivity and specificity of this association were calculated to be 95% and 83%, respectively. MCF is a simple reproducible predict marker of LGE in MM-CA patients. It is a potentially CMR-based method that promise to reduce scan times and costs, and boost the accessibility of CMR.


Asunto(s)
Amiloidosis , Gadolinio , Mieloma Múltiple , Contracción Miocárdica , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/complicaciones , Mieloma Múltiple/patología , Femenino , Masculino , Anciano , Persona de Mediana Edad , Amiloidosis/diagnóstico por imagen , Amiloidosis/fisiopatología , Amiloidosis/patología , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/fisiopatología , Cardiomiopatías/etiología , Curva ROC , Imagen por Resonancia Cinemagnética/métodos
5.
Adv Sci (Weinh) ; 11(30): e2402380, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837633

RESUMEN

Simultaneously achieving high-energy-density and high-power-density is a crucial yet challenging objective in the pursuit of commercialized power batteries. In this study, atomic layer deposition (ALD) is employed combined with a coordinated thermal treatment strategy to construct a densely packed, electron-ion dual conductor (EIC) protective coating on the surface of commercial LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material, further enhanced by gradient Al doping (Al@EIC-NCM523). The ultra-thin EIC effectively suppresses side reactions, thereby enhancing the stability of the cathode-electrolyte interphase (CEI) at high-voltages. The EIC's dual conduction capability provides a potent driving force for Li+ transport at the interface, promoting the formation of rapid ion deintercalation pathways within the Al@EIC-NCM523 bulk phase. Moreover, the strategic gradient doping of Al serves to anchor the atomic spacing of Ni and O within the structure of Al@EIC-NCM523, curbing irreversible phase transitions at high-voltages and preserving the integrity of its layered structure. Remarkably, Al@EIC-NCM523 displays an unprecedented rate capability (114.7 mAh g-1 at 20 C), and a sustained cycling performance (capacity retention of 74.72% after 800 cycles at 10 C) at 4.6 V. These findings demonstrate that the proposed EIC and doping strategy holds a significant promise for developing high-energy-density and high-power-density lithium-ion batteries (LIBs).

6.
ACS Nano ; 18(20): 12945-12956, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717846

RESUMEN

P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.

7.
Angew Chem Int Ed Engl ; 63(32): e202407898, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739536

RESUMEN

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high-energy-density and long-lasting electrode materials.

8.
ACS Appl Mater Interfaces ; 16(14): 17657-17665, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531381

RESUMEN

Rechargeable sodium-carbon dioxide (Na-CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na-CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na-CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g-1, a small overpotential of 1.53 V at a current density of 50 mA g-1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na-CO2 batteries and potentially Na-air batteries.

9.
Adv Mater ; 36(21): e2312207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329004

RESUMEN

Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1, the Na-S battery retains a capacity of 325 mAh g-1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.

10.
Nanomicro Lett ; 16(1): 77, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190031

RESUMEN

Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA