Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Hazard Mater ; 476: 135168, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991644

RESUMEN

High-grade heavy metal elements in copper slag (CS) are worth recovering. Unfortunately, the high viscosity of leaching solution, low leaching efficiency, difficult filtration and low separation efficiency of valuable components exist in the traditional sulfuric acid leaching process. In this study, the above problems are solved by sulfuric acid pretreatment + curing + water leaching. Moreover, iron, cobalt and copper ions in solution are separated by stepwise precipitation. The final iron, cobalt, copper and silicon recoveries are 99.01 %, 98.45 %, 93.13 % and 99.52 %, respectively. Thermodynamic calculations show that H4SiO4 can be converted to insoluble SiO2 to improve filtration properties under curing conditions of sulfur dioxide partial pressures of 10-20∼0 atm, oxygen partial pressures of 10-20∼0 atm and 400-600k. Simulation studies of the phase equilibria of the components of the leach solution by Visual MINTEQ showed that the oxidation of Fe2+ to Fe3+ is necessary for the removal of Fe2+ from the solution by precipitation. This study provides a new idea for the efficient utilization of CS.

4.
Clin Exp Med ; 23(8): 4237-4248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831432

RESUMEN

BTKi is an effective treatment in chronic lymphocytic leukemia. However, head-to-head clinical trials between BTKi are rare. To explore evidence-based treatment decisions, we conducted this network meta-analysis. We searched in PubMed, Cochrane Library and Embase and selected articles of BTKi treatment in CLL patients, with English restrictions. Objective response rate (ORR), progression-free survival (PFS) and safety were outcomes. Combination therapy and acalabrutinib monotherapy achieved great ORR (greater than 80%). Combination therapy (AO and IR) also performed terrific PFS (> 80%). Compared with ibrutinib monotherapy, zanubrutinib, acalabrutinib and IR showed no significance in overall survival. Diarrhea, hypertension, cardiac events, neutropenia were common adverse events of BTKi therapy. IR had higher incidence of hypertension (0.38, 95% CI 0.28-0.48), and IU was more likely occurred cardiac events. Zanubrutinib monotherapy had lower incidence of total serious adverse reaction (0.42, 95% confidence interval (95% CI): 0.36-0.47),while ibrutinib monotherapy occurred higher adverse reactions of grade ≥ 3 (0.77, 95% CI 0.72-0.82). Although both BTKi monotherapy and combination therapy showed great efficacy, combination therapy did not display priority. Meanwhile, safety of BTKi combination therapy needs to be fully and comprehensively considered.Registration number: CRD42022378732.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico
5.
J Med Virol ; 95(10): e29145, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37804480

RESUMEN

Along with the long pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has come the dilemma of emerging viral variants of concern (VOC), particularly Omicron and its subvariants, able to deftly escape immune surveillance and the otherwise protective effect of current vaccines and antibody drugs. We previously identified a peptide-based pan-CoV fusion inhibitor, termed as EK1, able to bind the HR1 region in viral spike (S) protein S2 subunit. This effectively blocked formation of the six-helix bundle (6-HB) fusion core and, thus, showed efficacy against all human coronaviruses (HCoVs). EK1 is now in phase 3 clinical trials. However, the peptide drug generally lacks oral availability. Therefore, we herein performed a structure-based virtual screening of the libraries of biologically active molecules and identified nine candidate compounds. One is Navitoclax, an orally active anticancer drug by inhibition of Bcl-2. Like EK1 peptide, it could bind HR1 and block 6-HB formation, efficiently inhibiting fusion and infection of all SARS-CoV-2 variants tested, as well as SARS-CoV and MERS-CoV, with IC50 values ranging from 0.5 to 3.7 µM. These findings suggest that Navitoclax is a promising repurposed drug candidate for development as a safe and orally available broad-spectrum antiviral drug to combat the current SARS-CoV-2 and its variants, as well as other HCoVs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reposicionamiento de Medicamentos , Péptidos , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
J Med Virol ; 95(3): e28641, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890632

RESUMEN

Numerous emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have shown significant immune evasion capacity and caused a large number of infections, as well as vaccine-breakthrough infections, especially in elderly populations. Recently emerged Omicron XBB was derived from the BA.2 lineage, but bears a distinct mutant profile in its spike (S) protein. In this study, we found that Omicron XBB S protein drove more efficient membrane-fusion kinetics on human lung-derived cells (Calu-3). Considering the high susceptibility of the elderly to the current Omicron pandemic, we performed a comprehensive neutralization assessment of elderly convalescent or vaccine sera against XBB infection. We found that the sera from elderly convalescent patients who experienced with BA.2 infection or breakthrough infection potently inhibited BA.2 infection, but showed significantly reduced efficacy against XBB. Moreover, recently emerged XBB.1.5 subvariant also showed more significant resistance to the convalescent sera of BA.2- or BA.5-infected elderly. On the other hand, we found that the pan-CoV fusion inhibitors EK1 and EK1C4 can potently block either XBB-S- or XBB.1.5-S-mediated fusion process and viral entry. Moreover, EK1 fusion inhibitor showed potent synergism when combined with convalescent sera of BA.2- or BA.5-infected patients against XBB and XBB.1.5 infection, further indicating that EK1-based pan-CoV fusion inhibitors are promising candidates for development as clinical antiviral agents to combat the Omicron XBB subvariants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Humanos , SARS-CoV-2/genética , Evasión Inmune , Sueroterapia para COVID-19 , Antirretrovirales , Infección Irruptiva , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
7.
Emerg Microbes Infect ; 12(1): 2178241, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748716

RESUMEN

Continuous emergence of the Omicron variant, along with its subvariants, has caused an increasing number of infections, reinfections, and vaccine-breakthrough infections, seriously threatening human health. Recently, several new Omicron subvariants, such as BA.5, BA.2.75, BA.4.6, and BF.7, bearing distinct mutation profiles in their spike (S) proteins, have significantly increased their capacity to evade vaccine-induced immunity and have shown enhanced infectivity and transmissibility, quickly becoming dominant sublineages. In this study, we found the S proteins of these Omicron subvariants to have 2- to 4-fold more efficient membrane fusion kinetics than that of the original Omicron variant (BA.1), indicating that these novel Omicron subvariants might possess increased pathogenicity. We also identified that peptide-based pan-CoV fusion inhibitors, EK1 and EK1C4, showed equal efficacy against membrane fusion mediated by S proteins of the noted Omicron subvariants and infection by their pseudoviruses. Additionally, either immune sera induced by wild-type (WT) SARS-CoV-2 RBD-based vaccine or BA.2 convalescent sera showed potent synergism with EK1 against both WT SARS-CoV-2 and various Omicron subvariants, further suggesting that EK1-based fusion inhibitors are promising candidates for development as clinical antiviral agents against the currently circulating Omicron subvariants.


Asunto(s)
COVID-19 , Humanos , Sueroterapia para COVID-19 , SARS-CoV-2 , Antirretrovirales , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus
8.
J Med Virol ; 95(1): e28143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098460

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed a serious threat to global public health. Recently, several SARS-CoV-2 variants of concern (VOCs) have emerged and caused numerous cases of reinfection in convalescent COVID-19 patients, as well as breakthrough infections in vaccinated individuals. This calls for the development of broad-spectrum antiviral drugs to combat SARS-CoV-2 and its VOCs. Pan-coronavirus fusion inhibitors, targeting the conserved heptad repeat 1 (HR1) in spike protein S2 subunit, can broadly and potently inhibit infection of SARS-CoV-2 and its variants, as well as other human coronaviruses. In this review, we summarized the most recent development of pan-coronavirus fusion inhibitors, such as EK1, EK1C4, and EKL1C, and highlighted their potential application in combating current COVID-19 infection and reinfection, as well as future emerging coronavirus infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2/metabolismo , Reinfección , Antivirales/farmacología , Antivirales/uso terapéutico , Antirretrovirales , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Signal Transduct Target Ther ; 7(1): 241, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853878

RESUMEN

Recently, a large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerged and posed a major threat to global public health. Among them, particularly, Omicron variant (B.1.1.529), first identified in November 2021, carried numerous mutations in its spike protein (S), and then quickly spread around the world. Currently, Omicron variant has expanded into more than one hundred sublineages, such as BA.1, BA.2, BA.2.12.1, BA.4 and BA.5, which have already become the globally dominant variants. Different from other variants of concern (VOCs) of SARS-CoV-2, the Omicron variant and its sublineages exhibit increased transmissibility and immune escape from neutralizing antibodies generated through previous infection or vaccination, and have caused numerous re-infections and breakthrough infections. In this prospective, we have focused on the origin, virological features, immune evasion and intervention of Omicron sublineages, which will benefit the development of next-generation vaccines and therapeutics, including pan-sarbecovirus and universal anti-CoV therapeutics, to combat currently circulating and future emerging Omicron sublineages as well as other SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Evasión Inmune/genética , Estudios Prospectivos , SARS-CoV-2/genética
10.
Viruses ; 14(3)2022 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-35336956

RESUMEN

Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Lipopéptidos/farmacología , Ácido Palmítico/farmacología , SARS-CoV-2
13.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769299

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/química , Lipopéptidos/química , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/uso terapéutico , Peso Corporal/efectos de los fármacos , COVID-19/virología , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/patogenicidad , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/patogenicidad , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/uso terapéutico , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Tasa de Supervivencia , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Signal Transduct Target Ther ; 6(1): 288, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326308

RESUMEN

The COVID-19 pandemic poses a global threat to public health and economy. The continuously emerging SARS-CoV-2 variants present a major challenge to the development of antiviral agents and vaccines. In this study, we identified that EK1 and cholesterol-coupled derivative of EK1, EK1C4, as pan-CoV fusion inhibitors, exhibit potent antiviral activity against SARS-CoV-2 infection in both lung- and intestine-derived cell lines (Calu-3 and Caco2, respectively). They are also effective against infection of pseudotyped SARS-CoV-2 variants B.1.1.7 (Alpha) and B.1.1.248 (Gamma) as well as those with mutations in S protein, including N417T, E484K, N501Y, and D614G, which are common in South African and Brazilian variants. Crystal structure revealed that EK1 targets the HR1 domain in the SARS-CoV-2 S protein to block virus-cell fusion and provide mechanistic insights into its broad and effective antiviral activity. Nasal administration of EK1 peptides to hACE2 transgenic mice significantly reduced viral titers in lung and intestinal tissues. EK1 showed good safety profiles in various animal models, supporting further clinical development of EK1-based pan-CoV fusion inhibitors against SARS-CoV-2 and its variants.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Células CACO-2 , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Ratones Transgénicos , Dominios Proteicos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
Acta Cardiol Sin ; 34(2): 115-123, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29643696

RESUMEN

Heart regeneration remains a critical question in current basic research and clinical practice. The adult mammalian heart exhibits a very limited regeneration capacity. In contrast, adult zebrafish and neonatal mice retain a remarkable ability of heart regeneration after damage. Understanding the mechanisms of heart regeneration would be very valuable to help design efficient treatment strategies against myocardial damage and heart failure. While inherent regeneration of the heart occurs after damage with varying efficiency among species, regeneration may also be induced exogenously. In this study, we briefly review the different approaches and current progress in improving heart regeneration.

17.
Biosci Biotechnol Biochem ; 74(10): 2151-3, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20944401

RESUMEN

A fast and reliable liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) method was developed and validated for the quantification of voriconazole in human plasma. The proposed method was validated in a linear range of 50-10,000 ng/ml, and the total run time was 1.5 min. This method was successfully used to support routine therapeutic drug monitoring of voriconazole.


Asunto(s)
Presión Atmosférica , Análisis Químico de la Sangre/métodos , Cromatografía Liquida/métodos , Pirimidinas/sangre , Espectrometría de Masas en Tándem/métodos , Triazoles/sangre , Anciano , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Factores de Tiempo , Voriconazol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA