Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Environ Technol ; : 1-10, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267328

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are pervasive and persistent pollutants in contaminated soil, posing a severe health and environmental threat. Enzymatic bioremediation presents a viable solution for the remediation of PAH-contaminated soil. In this study, a recombinant laccase with the encoding gene originating from Trametes villosa and recombinantly expressed in Aspergillus oryzae, designated as TVL, was discovered to possess strong PAH reduction capabilities. The specific enzyme activity of TVL was 73485 and 5102 LAMU/g enzyme protein at pH 5.0/7.0 and 37°C. Furthermore, it exhibited significant benzo[a]pyrene degradation, with 100% and 90.48% degradation at pH 5.0/7.0 after 24 h in the liquid phase. The degradation process of benzo[a]pyrene in soil was thoroughly investigated. Optimal conditions were identified as 15 mg/g NK-BSoil-3 and 1.35 mg/g HBT, resulting in a removal rate of 37.54% within 7 days when 0.01 U/g of TVL was applied. The potential mechanisms were investigated using molecular docking simulation. The binding energy between benzo[a]pyrene and TVL protein is notably robust, suggesting a higher propensity for enzyme binding. The TVL protein pocket contains nine amino acids that can interact most strongly with benzo[a]pyrene. Consequently, the recombinant laccase TVL holds considerable practical significance in bioremediation.

2.
Environ Res ; 262(Pt 1): 119763, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122164

RESUMEN

Bioremediation of PAHs-contaminated soil by immobilized enzymes is a promising technology. Nevertheless, the practical implementation of highly efficient enzymatic remediation remains confined to laboratory settings, with limited experience in full-scale applications. In this study, the extracellular enzymes from white rot fungi are fully applied to treat sites contaminated with PAHs by combining a new hydrogel microenvironment and a biopiling system. The full-scale project was conducted on silty loam soil contaminated with PAHs. In line with China's guidelines for construction land, 7 out of the 12 PAHs identified are considered to be a threat to the soil quality of construction sites, with benzo[a]pyrene levels reaching 1.50 mg kg-1, surpassing the acceptable limit of 0.55 mg kg-1 for the first type of land. After 7 days of remediation, the benzo[a]pyrene level decreased from 1.50 mg kg-1 to 0.51 mg kg-1, reaching the remediation standard of Class I screening values, with a removal rate of 66%. Microbiomes were utilized to assess the microbial biodiversity and structure analyses for PAHs biodegradation. The remediation enhanced the abundance of dominant bacterium (Marinobacter, Pseudomonas, and Truepera) and fugin (Thielavia, Neocosmospora, and Scedosporium). The research offers further insights into the exploration of soil remediation on the full-scale of the immobilized enzyme and biopiling technology.

3.
Environ Res ; 261: 119716, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096990

RESUMEN

Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.


Asunto(s)
Bentonita , Benzo(a)pireno , Enzimas Inmovilizadas , Saponinas , Contaminantes del Suelo , Bentonita/química , Benzo(a)pireno/química , Contaminantes del Suelo/química , Adsorción , Saponinas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
4.
Acta Pharmacol Sin ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143234

RESUMEN

Doxorubicin (DOX), a common chemotherapeutic agent in cancer therapy, is accompanied by pronounced cardiotoxicity. Ferroptosis has been implicated in the pathogenesis and therapeutics of DOX-induced cardiotoxicity (DIC). Asiatic acid (AA), a pentacyclic triterpene from the Chinese medicinal herb Centella asiatica, displays antioxidant, anti-inflammatory, and antiapoptotic activities. In this study, we investigated the beneficial effects of AA against DOX-induced ferroptosis and cardiotoxicity and the underlying mechanisms. A chronic DIC model was established by challenging mice with DOX (5 mg/kg, i.p.) once per week for 4 weeks. Concurrent with DOX insult, the mice were administered AA (25 mg·kg-1·d-1, i.g.). Cardiac function and mechanical properties of isolated cardiomyocytes were evaluated at the end of treatment. We showed that AA administration preserved cardiac function, significantly reduced cardiac injury, and improved cardiomyocyte contractile function in DIC mice. The beneficial effects of AA were causally linked to the inhibition of DOX-induced ferroptosis both in vivo and in vitro. We revealed that AA attenuated DOX-induced iron accumulation in HL-1 cells by increasing FPN-mediated iron export, in a Nrf2-dependent manner. AA upregulated Nrf2 expression and promoted Nrf2 nuclear translocation in DOX-treated HL-1 cells. Moreover, AA-offered benefits against DOX-induced cardiac dysfunction and ferroptosis were abolished by Nrf2 inhibitor ML385 (30 mg·kg-1·d-1, i.p.) administrated 30 min before AA in DIC mice. Our data favor that AA promotes FPN-mediated iron export to inhibit iron overload and ferroptosis in DIC, suggesting its therapeutic potential in the treatment of DIC.

5.
J Chromatogr A ; 1730: 465130, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38955130

RESUMEN

This study describes the preparation of a cylindrical polymer foam column termed Chitosan/ß-Cyclodextrin/MIL-68(Al) (CS/ß-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/ß-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and ß-cyclodextrin (ß-CD). The cylindrical CS/ß-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/ß-CD/MIL-68(Al) foam column. Moreover, the CS/ß-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, ß-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/ß-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/ß-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.


Asunto(s)
Quitosano , Límite de Detección , Estructuras Metalorgánicas , Leche , Extracción en Fase Sólida , Sulfonamidas , beta-Ciclodextrinas , Extracción en Fase Sólida/métodos , Quitosano/química , beta-Ciclodextrinas/química , Leche/química , Estructuras Metalorgánicas/química , Sulfonamidas/orina , Sulfonamidas/aislamiento & purificación , Sulfonamidas/química , Animales , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Humanos , Reproducibilidad de los Resultados
6.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963450

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Ácido Cítrico , Contaminantes del Suelo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Lacasa/metabolismo , Microbiología del Suelo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomasa
7.
Int J Biol Macromol ; 277(Pt 2): 134288, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079238

RESUMEN

Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress tolerance is modification specific gene by emerging precision genome editing technology. However, our knowledge of yield-related drought-tolerant genes is still limited. Foxtail millet (Setaria italica) has a remarkable tolerance to drought and is considered to be a model C4 crop that is easy to engineer. Here, we have identified 46 drought-responsive candidate genes by performing a machine learning-based transcriptome study on two drought-tolerant and two drought-sensitive foxtail millet cultivars. A total of 12 important drought-responsive genes were screened out by principal component analysis and confirmed experimentally by qPCR. Significantly, by investigating the haplotype of these genes based on 1844 germplasm resources, we found two genes (Seita.5G251300 and Seita.8G036300) exhibiting drought-tolerant haplotypes that possess an apparent advantage in 1000 grain weight and main panicle grain weight without penalty in grain weight per plant. These results demonstrate the potential of Seita.5G251300 and Seita.8G036300 for breeding drought-tolerant high-yielding foxtail millet. It provides important insights for the breeding of drought-tolerant high-yielding crop cultivars through genetic manipulation technology.


Asunto(s)
Biología Computacional , Sequías , Regulación de la Expresión Génica de las Plantas , Aprendizaje Automático , Setaria (Planta) , Estrés Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/crecimiento & desarrollo , Biología Computacional/métodos , Estrés Fisiológico/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas , Haplotipos/genética , Transcriptoma/genética , Proteínas de Plantas/genética
8.
J Environ Manage ; 366: 121630, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986381

RESUMEN

The coupling of microscale zero-valent iron (mZVI) and anaerobic bacteria (AB) has gained increasing attention due to its ability to enhance dechlorination efficiency by combining the advantages of chemical and microbial reduction. However, the implementation of these coupling technologies at the field scale is challenging in terms of sustainability goals due to the coexistence of various natural electron acceptors in groundwater, which leads to limited electron selectivity and increased secondary risk. Therefore, this study used trichloroethylene (TCE) as a probe contaminant and nitrate (NO3-) as a typical co-occurring natural electron acceptor to optimize the overall sustainable remediation performance of an mZVI/AB coupled system by adjusting the mZVI particle size and dosage. Results revealed that mZVI particles of different sizes exhibit different microorganism activation capabilities. In contrast to its 2 µm and 7 µm counterparts, the 30 µm mZVI/AB system demonstrated a strong dosage-dependency in TCE removal and its product selectivity. Finally, multi-criteria analysis (MCA) methods were established to comprehensively rank the alternatives, and 30 µm mZVI (15 g/L dosage) was determined to be the best remediation strategy with the highest total sustainability score under all studied hydro-chemical conditions when equal weights were applied to technical, environmental, and economic indicators. Our work provides a paradigm for comprehensively assessing the sustainable remediation performance of chlorinated aliphatic hydrocarbons polluted groundwater in practical applications.


Asunto(s)
Agua Subterránea , Hierro , Nitratos , Tricloroetileno , Agua Subterránea/química , Nitratos/química , Hierro/química , Contaminantes Químicos del Agua/química , Bacterias Anaerobias/metabolismo , Tamaño de la Partícula
9.
Transl Oncol ; 47: 102007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906065

RESUMEN

BACKGROUND: Radiation-induced lung injury (RILI) is a serious complication of radiation therapy, and it is mediated by long non-coding RNAs (lncRNAs). STUDY DESIGN AND METHODS: Mouse lung tissues were examined using RNA-Seq and RNA-Seq libraries 72 h after the administration of 6 Gy of X-ray irradiation. The target mRNAs were functionally annotated and the target lncRNA-based miRNAs and target miRNA-based mRNAs were predicted after irradiation to establish the lncRNA-miRNA-mRNA ceRNA axis. RESULTS: The analyses showed that relative to unirradiated controls, 323 mRNAs, 114 miRNAs, and 472 lncRNAs were significantly up-regulated following irradiation, whereas 1907 mRNAs, 77 miRNAs, and 1572 lncRNAs were significantly down-regulated following irradiation. Voltage-gated ion channels, trans-membrane receptor protein tyrosine kinases, and vascular endothelial growth factor have all been associated with dysregulated miRNA-mRNA relationships. KEGG pathway analysis of the dysregulated miRNA-mRNA targets revealed involvement in pathways associated with the hedgehog signaling pathway-fly, ErbB signaling, VEGF signaling, axon guidance, and focal adhesion. KEGG analysis of differentially expressed showed enrichment of mRNAs in primary immunodeficiency, the intestinal immune axis for IgA production, hematopoietic cell lineages, systemic lupus erythematosus, and Th1 and Th2 cell differentiation. Finally, the ceRNA network revealed that BNIP1 was a critical mRNA modulated by the most significant upregulation of lncRNA E230013L22Rik. CONCLUSION: In summary, the lncRNA-miRNA-mRNA ceRNA axis of RILI was constructed following irradiation in a mouse model. RNA dysregulation in the early stage of RILI may lead to severe complications at a later stage, with BNIP1 contributing to radiation-induced cellular apoptosis in RILI.

10.
J Stroke ; 26(2): 347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38836285
11.
J Chromatogr A ; 1730: 465098, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38901295

RESUMEN

The epoxy propanol molecular cage bonded silica stationary phase, RCC3-GLD@silica, synthesized through the ring-opening reaction of secondary amine with epoxy propanol using RCC3-R as the scaffold unit, was successfully prepared as confirmed by infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption-desorption characterization. This stationary phase demonstrated excellent separation performance in both reversed-phase and hydrophilic chromatography modes, effectively separating a wide variety of compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, anilines, sulfonamides, nucleosides, amino acids, sugars, and acids. The development of RCC3-GLD@silica benefits from the synergistic effects of its hydrophobic and hydrophilic actions, as evidenced by the U-shaped characteristic of the retention factor for nucleoside compounds with changes in the aqueous content of the mobile phase, further confirming the simultaneous presence of reversed-phase and hydrophilic chromatography mechanisms. Not only did this stationary phase successfully separate 33 compounds in reversed-phase chromatography mode, but it also separated 54 compounds in hydrophilic interaction chromatography mode, showcasing its broad separation capability from weakly polar to strongly polar compounds on a single chromatographic column. This indicates a wide application prospect in the field of chromatographic analysis.


Asunto(s)
Cromatografía de Fase Inversa , Interacciones Hidrofóbicas e Hidrofílicas , Nucleósidos , Dióxido de Silicio , Dióxido de Silicio/química , Cromatografía de Fase Inversa/métodos , Nucleósidos/aislamiento & purificación , Nucleósidos/química , Compuestos Epoxi/química , Aminoácidos/aislamiento & purificación , Aminoácidos/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/química , Fenoles/aislamiento & purificación , Fenoles/química , Cromatografía Líquida de Alta Presión/métodos
12.
Int J Ophthalmol ; 17(5): 861-868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766350

RESUMEN

AIM: To investigate macular microperimetry in patients with early primary open angle glaucoma (POAG) using a new custom-made pattern, and analyze the characteristics of macular sensitivity. METHODS: This case-control study included 38 patients with POAG, who were divided into pre-perimetric glaucoma (18 eyes of 18 patients), early-stage (20 eyes of 20 patients), and control (20 eyes of 20 patients) groups. All subjects underwent standard 24-2 humphrey visual field test. An MP-3 microperimeter with a new custom-made pattern (28 testing points distributed in four quadrants, covering the central 10° of the retina) was used to evaluate macular sensitivity. Ganglion cell complex (GCC) thicknesses were examined using an RS-3000 Advance OCT system. The features of structure and function were analysed per quadrant. RESULTS: The pre-perimetric glaucoma group had significantly lower inferior hemifield macular sensitivity compared to controls (P<0.05). The early-stage POAG group had significantly lower average, inferior hemifield, inferonasal, and inferotemporal mean sensitivities compared to the pre-perimetric glaucoma group (P<0.05), and lower macular sensitivity in all sectors compared to controls (P<0.05). Regarding GCC thickness, all sectors in the early-stage POAG group became thinner compared to those in controls (P<0.05); whereas all sectors in the early-stage POAG group, except the superonasal quadrant, became thinner compared to those in the pre-perimetric glaucoma group (P<0.05). Macular sensitivity and GCC thickness were significantly associated in each sector. The inferotemporal quadrant had the highest correlation coefficients (0.840). The structure-function relationship for the inferonasal and inferotemporal sectors was stronger compared to the corresponding superior sectors. CONCLUSION: Microperimetry reveals variations in macular sensitivity in patients with early glaucoma earlier than conventional perimetry, particularly in pre-perimetric glaucoma cases in which it might be undetectable by conventional methods. The new custom-made pattern may improve the accuracy of microperimetry by enhancing point arrangement and reducing fatigue effects. Macular sensitivity measured by MP-3 with this pattern shows statistically significant structural and functional associations with the thicknesses of the GCC.

13.
J Obstet Gynaecol Res ; 50(8): 1302-1308, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769797

RESUMEN

OBJECTIVE: To explore the clinical feasibility of different treatment methods for persistent occipitotransverse position and the influence on maternal and infant complications. METHOD: During the trial of vaginal delivery from April 2020 to March 2023 in our hospital, the cervix was fully dilated and the presentation was located at +2 station. Ninety-six pregnant women with fetal presentation at +4 station, occipitotransverse fetal position, maternal complications, abnormalities in the second stage of labor, and or fetal distress were divided into two groups: 65 patients with Kielland forceps vaginal delivery and 31 patients underwent emergency cesarean section. The delivery time, vaginal laceration rate, postpartum blood loss volume, puerperal infection rate, neonatal birth injury rate, and neonatal 1 min Apgar scores were analyzed. RESULTS: The delivery outcomes and maternal and neonatal complications of 96 pregnant women were analyzed: the application of Kielland forceps delivery time was shorter, while the vaginal laceration rate, postpartum hemorrhage, puerperal infection rate were significantly lower than that of patients undergoing emergency cesarean section and the neonatal 1 min Apgar score was higher than that of emergency cesarean section group (p < 0.05). CONCLUSION: It was clinically appropriate to use Kielland forceps in vaginal delivery when the persistent occipitotransverse position was present and delivery needed to be expediated. Use of Kielland forceps can shorten the delivery time, improve the success rate of vaginal delivery and reduce the complications of mothers and infants.


Asunto(s)
Parto Obstétrico , Humanos , Femenino , Embarazo , Adulto , Recién Nacido , Parto Obstétrico/métodos , Parto Obstétrico/efectos adversos , Presentación en Trabajo de Parto , Forceps Obstétrico/efectos adversos , Cesárea/estadística & datos numéricos , Resultado del Embarazo , Puntaje de Apgar
14.
Redox Biol ; 72: 103157, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38631119

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a chemotherapeutic drug, while its clinical use is greatly limited by the life-threatening cardiotoxicity. N6-methyladenosine (m6A) RNA modification participates in varieties of cellular processes. Nonetheless, it remains elusive whether m6A modification and its methyltransferase METTL3 are involved in the progression of DOX-induced cardiotoxicity (DIC). METHODS: Mice were administrated with DOX (accumulative dosage of 20 mg/kg) repeatedly to establish a chronic DIC model. Cardiomyocyte-specific conditional METTL3 knockout mice were employed to evaluate the effects of altered m6A RNA modification on DIC. The effects of METTL3 on cardiomyocyte ferroptosis were also examined in response to DOX stimulation. RESULTS: DOX led to increased levels in m6A modification and METTL3 expression in cardiomyocytes in a c-Jun-dependent manner. METTL3-knockout mice exhibited improved cardiac function, remodeling and injury following DOX insult. Besides, inhibition of METTL3 alleviated DOX-induced iron accumulation and ferroptosis in cardiomyocytes, whereas METTL3 overexpression exerted the opposite effects. Mechanistically, METTL3 promoted m6A modification of TFRC mRNA, a critical gene governing iron uptake, and enhanced its stability through recognition of the m6A reader protein, IGF2BP2. Moreover, pharmacological administration of a highly selective METTL3 inhibitor STM2457 effectively ameliorated DIC in mice. CONCLUSION: METTL3 plays a cardinal role in the etiology of DIC by regulating cardiac iron metabolism and ferroptosis through TFRC m6A modification. Inhibition of METTL3 might be a potential therapeutic avenue for DIC.


Asunto(s)
Doxorrubicina , Ferroptosis , Metiltransferasas , Miocitos Cardíacos , Animales , Humanos , Masculino , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Ferroptosis/efectos de los fármacos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos
15.
Cardiovasc Res ; 120(8): 883-898, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626254

RESUMEN

AIMS: The activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in endothelial cells (ECs) contributes to vascular inflammation in atherosclerosis. Considering the high glycolytic rate of ECs, we delineated whether and how glycolysis determines endothelial NLRP3 inflammasome activation in atherosclerosis. METHODS AND RESULTS: Our results demonstrated a significant up-regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key regulator of glycolysis, in human and mouse atherosclerotic endothelium, which positively correlated with NLRP3 levels. Atherosclerotic stimuli up-regulated endothelial PFKFB3 expression via sterol regulatory element-binding protein 2 (SREBP2) transactivation. EC-selective haplodeficiency of Pfkfb3 in Apoe-/- mice resulted in reduced endothelial NLRP3 inflammasome activation and attenuation of atherogenesis. Mechanistic investigations revealed that PFKFB3-driven glycolysis increased the NADH content and induced oligomerization of C-terminal binding protein 1 (CtBP1), an NADH-sensitive transcriptional co-repressor. The monomer form, but not the oligomer form, of CtBP1 was found to associate with the transcriptional repressor Forkhead box P1 (FOXP1) and acted as a transrepressor of inflammasome components, including NLRP3, caspase-1, and interleukin-1ß (IL-1ß). Interfering with NADH-induced CtBP1 oligomerization restored its binding to FOXP1 and inhibited the glycolysis-dependent up-regulation of NLRP3, Caspase-1, and IL-1ß. Additionally, EC-specific overexpression of NADH-insensitive CtBP1 alleviates atherosclerosis. CONCLUSION: Our findings highlight the existence of a glycolysis-dependent NADH/CtBP/FOXP1-transrepression pathway that regulates endothelial NLRP3 inflammasome activation in atherogenesis. This pathway represents a potential target for selective PFKFB3 inhibitors or strategies aimed at disrupting CtBP1 oligomerization to modulate atherosclerosis.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Células Endoteliales , Glucólisis , Inflamasomas , Ratones Noqueados para ApoE , Proteína con Dominio Pirina 3 de la Familia NLR , Fosfofructoquinasa-2 , Animales , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Humanos , Inflamasomas/metabolismo , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , NAD/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Ratones Endogámicos C57BL , Transducción de Señal , Masculino , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Placa Aterosclerótica , Oxidorreductasas de Alcohol , Proteína 2 de Unión a Elementos Reguladores de Esteroles
16.
Bull Environ Contam Toxicol ; 112(5): 70, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676752

RESUMEN

Trichloroethylene (TCE) poses a potentially toxic threat to humans and the environment and widely exists in contaminated sites. White rot fungi effectively degrade refractory pollutants, while a few research studies use white rot fungi to degrade TCE. In this study, we investigated TCE biodegradation by white rot fungi and the potential influencing factors in the environment and attempted to research the effect of TCE on the physiological characteristics of white rot fungi. White rot fungi (Trametes versicolor, Pseudotrametes gibbosa, Pycnoporus sanguines and Pleurotus ostreatus) were added to the liquid medium for shock culture. The results revealed that T. versicolor exhibited the most pronounced efficacy in removing TCE, with a degradation rate of 81.10% within a 7 d period. TCE induces and is degraded by cytochrome P450 enzymes. High pH and Cr(VI) adversely affected the effectiveness of the biodegradation of TCE, but the salinity range of 0-1% had less effect on biodegradation. Overall, the effectiveness of degradation of TCE by T. versicolor has been demonstrated, and it provides a reference for the application prospects of white rot fungi in TCE-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Tricloroetileno , Tricloroetileno/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Polyporaceae/metabolismo
17.
Environ Res ; 252(Pt 2): 118937, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621627

RESUMEN

Hydroxyapatite, a calcium phosphate biomass material known for its excellent biocompatibility, holds promising applications in water, soil, and air treatment. Sodium alginate/hydroxyapatite/chitosan (SA-HA-CS) microspheres were synthesized by cross-linking sodium alginate with calcium chloride. These microspheres were carriers for immobilizing extracellular crude enzymes from white rot fungi through adsorption, facilitating the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil. At 50 °C, the immobilized enzyme retained 87.2% of its maximum activity, while the free enzyme activity dropped to 68.86%. Furthermore, the immobilized enzyme maintained 68.09% of its maximum activity at pH 7, surpassing the 51.16% observed for the free enzyme. Under optimal conditions (pH 5, 24 h), the immobilized enzymes demonstrated a remarkable 94.7% removal rate for 160 mg/L 2,4,6-TCP, outperforming the 62.1% achieved by free crude enzymes. The degradation of 2,4,6-TCP by immobilized and free enzymes adhered to quasi-first-order degradation kinetics. Based on LC-MS, the plausible biodegradation mechanism and reaction pathway of 2,4,6-TCP were proposed, with the primary degradation product identified as 1,2,4-trihydroxybenzene. The immobilized enzyme effectively removed 72.9% of 2,4,6-TCP from the soil within 24 h. The degradation efficiency of the immobilized enzyme varied among different soil types, exhibiting a negative correlation with soil organic matter content. These findings offer valuable insights for advancing the application of immobilized extracellular crude enzymes in 2,4,6-TCP remediation.


Asunto(s)
Alginatos , Biodegradación Ambiental , Quitosano , Clorofenoles , Durapatita , Enzimas Inmovilizadas , Microesferas , Clorofenoles/metabolismo , Alginatos/química , Quitosano/química , Durapatita/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química
18.
Environ Technol ; : 1-12, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522073

RESUMEN

Microbial remediation of organically combined contaminated sites is currently facing technical challenges. White rot fungi possess broad-spectrum degradation capabilities, but most of the studies are conducted on polluted water bodies, and few research focus on the degradation of combined organically contaminated soils. This study aimed to investigate the physiological changes in Trametes versicolor to enhance its simultaneous degradation ability towards benzo(a)pyrene (BaP) and TPH. The results demonstrated that Trametes versicolor, when subjected to liquid fermentation, achieved an 88.08% degradation of individual BaP within 7 days. However, under the combined contamination conditions of BaP and TPH, the BaP degradation rate decreased to 69.25%, while the TPH degradation rate was only 16.95%. Furthermore, the degradation rate of BaP exhibited a significant correlation with the extracellular protein concentration and laccase activities. Conversely, the TPH degradation rate exhibited a significant and positive correlation with the intracellular protein concentration. Solid-state fermentation utilizing fungal agents proved to be the most effective method for removing BaP and TPH, yielding degradation rates of 56.16% and 15.73% respectively within 60 days. Overall, Trametes versicolor demonstrated a commendable capability for degrading combined PAHs-TPH pollutants, thereby providing theoretical insights and technical support for the remediation of organically combined contaminated sites.

19.
ACS Omega ; 9(6): 7269, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371812

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.3c04101.].

20.
J Stroke ; 26(1): 1-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38326703

RESUMEN

Cerebral amyloid angiopathy (CAA) has been proven to be the most common pathological change in cerebral small vessel disease except arteriosclerosis. In recent years, with the discovery of imaging technology and new imaging markers, the diagnostic rate of CAA has greatly improved. CAA plays an important role in non-hypertensive cerebral hemorrhage and cognitive decline. This review comprehensively describes the etiology, epidemiology, pathophysiological mechanisms, clinical features, imaging manifestations, imaging markers, diagnostic criteria, and treatment of CAA to facilitate its diagnosis and treatment and reduce mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA