Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202403035, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354660

RESUMEN

Achieving food sustainability is one of the biggest challenges in the new millennium. Plant factory cultivation systems provide an alternative for food sustainability, while they often suffer from algal blooms. The overuse of conventional algaecides has caused significant environmental pollution and concerns about food security. Here, we design a nanoenabled metal-organic algaecide that is self-assembled from natural polyphenols and two functional metal ions for providing shading effects and delivering active ingredients synergistically to suppress algal blooms. Black wattle tannin (BWT) and Fe3+ ions are utilized to develop self-assembled FeBWT nanoalgaecides with significant shading effects for decreasing light transmission (up to 97%) and effectively inhibiting algal photosynthesis. Further, the FeBWT is functionalized with Cu2+ ions (bimetallic Cu/FeBWT) to target the algal cells and release Cu2+ ions via phenolic-mediated cell surface interactions, thus enhancing the inhibition efficiency. Importantly, the biosafety of Cu/FeBWT is demonstrated through toxicity tests on zebrafish and NIH3T3 cells. In our real-world field test, the Cu/FeBWT demonstrates high algal inhibition performance (> 95%, over 30 days), and enhances the accumulation of food nutrients in model plant lettuces. Collectively, the supramolecular metal-organic nanoalgaecide provides a promise for nanoagrochemical application and promoting food sustainability and security.

2.
Sci Rep ; 14(1): 20367, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223174

RESUMEN

This study elucidated the unique pathological features of tissue healing by magnamosis and revealed the changes in landmark molecule expression levels related to collagen synthesis and tissue hypoxia. Forty-eight male Sprague-Dawley rats were divided into the magnamosis and suture anastomosis groups, and gastrojejunal anastomosis surgery was performed. Rats were dissected at 6, 24, and 48 h and 5, 6, 8, 10, and 12 days postoperatively. Hematoxylin, eosin, and Masson's trichrome staining were used to evaluate granulation tissue proliferation and collagen synthesis density at the anastomosis site. Immunohistochemistry was used to measure TGF-ß1 and HIF-1α expression levels. Magnamosis significantly shortened the operation time, resulting in weaker postoperative abdominal adhesions (P < 0.0001). Histopathological results showed a significantly lower granulation area in the magnamosis group than in the suture anastomosis group (P = 0.0388), with no significant difference in the density of collagen synthesis (P = 0.3631). Immunohistochemistry results indicated that the magnamosis group had significantly lower proportions of TGF-ß1-positive cells at 24 (P = 0.0052) and 48 h (P = 0.0385) postoperatively and HIF-1α-positive cells at 24 (P = 0.0402) and 48 h postoperatively (P = 0.0005). In a rat model of gastrojejunal anastomosis, magnamosis leads to improved tissue healing at the gastrojejunal anastomosis, associated with downregulated expression levels of TGF-ß1 and HIF-1α.


Asunto(s)
Anastomosis Quirúrgica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Cicatrización de Heridas , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Ratas , Yeyuno/cirugía , Yeyuno/metabolismo , Regulación hacia Abajo , Colágeno/metabolismo , Estómago/cirugía , Estómago/patología
3.
Mol Cancer ; 23(1): 207, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39334380

RESUMEN

BACKGROUND: The clinical response rate to immune checkpoint blockade (ICB) therapy in melanoma remains low, despite its widespread use. Circular non-coding RNAs (circRNAs) are known to play a crucial role in cancer progression and may be a key factor limiting the effectiveness of ICB treatment. METHODS: The circRNAs that were downregulated after coadministration compared with single administration of PD-1 inhibitor administration were identified through RNA-seq and Ribo-seq, and thus the circPIAS1 (mmu_circ_0015773 in mouse, has_circ_0008378 in human) with high protein coding potential was revealed. Fluorescence in situ hybridization (FISH) assays were conducted to determine the localization of circPIAS1 in human and mouse melanoma cells, as well as its presence in tumor and adjacent tissues of patients. Validation through dual-luciferase reporter assay and LC-MS/MS confirmed the ability of circPIAS1 to encode a novel 108 amino acid polypeptide (circPIAS1-108aa). Specific antisense oligonucleotides (ASOs) targeting the junction site of circPIAS1 were developed to reduce its intracellular levels. Proliferation changes in melanoma cells were assessed using CCK8, EdU, and colony formation assays. The impact of circPIAS1-108aa on the ferroptosis process of melanoma cells was studied through GSH, MDA, and C11-BODIPY staining assays. Western Blot, Immunoprecipitation (IP), and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques were employed to investigate the impact of circPIAS1-108aa on the P-STAT1/SLC7A11/GPX4 signaling pathway, as well as its influence on the balance between STAT1 SUMOylation and phosphorylation. Additionally, a melanoma subcutaneous transplanted tumor mouse model was utilized to examine the combined effect of reducing circPIAS1 levels alongside PD-1 inhibitor. RESULTS: Compared with the group treated with PD-1 inhibitor alone, circPIAS1 was significantly down-regulated in the coadministration group and demonstrated higher protein coding potential. CircPIAS1, primarily localized in the nucleus, was notably upregulated in tumor tissues compared to adjacent tissues, where it plays a crucial role in promoting cancer cell proliferation. This circRNA can encode a unique polypeptide consisting of 108 amino acids, through which it exerts its cancer-promoting function and impedes the effectiveness of ICB therapy. Mechanistically, circPIAS1-108aa hinders STAT1 phosphorylation by recruiting SUMO E3 ligase Ranbp2 to enhance STAT1 SUMOylation, thereby reactivating the transduction of the SLC7A11/GPX4 signaling pathway and restricting the immunogenic ferroptosis induced by IFNγ. Furthermore, the combination of ASO-circPIAS1 with PD-1 inhibitor effectively inhibits melanoma growth and significantly enhances the efficacy of immune drugs in vivo. CONCLUSIONS: Our study uncovers a novel mechanism regarding immune evasion in melanoma driven by a unique 108aa peptide encoded by circPIAS1 in melanoma that dramatically hinders immunogenic ferroptosis triggered by ICB therapy via modulating the balance between SUMOylation and phosphorylation of STAT1. This work reveals circPIAS1-108aa as a critical factor limiting the immunotherapeutic effects in melanoma and propose a promising strategy for improving ICB treatment outcomes.


Asunto(s)
Ferroptosis , Proteínas Inhibidoras de STAT Activados , ARN Circular , Factor de Transcripción STAT1 , Sumoilación , Ferroptosis/genética , Humanos , Animales , Ratones , ARN Circular/genética , Fosforilación , Factor de Transcripción STAT1/metabolismo , Línea Celular Tumoral , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Melanoma/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Femenino
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(10): 1195-1200, 2024 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-39344613

RESUMEN

OBJETIVE: To explore the clinical and genetic characteristics of two children with Neurodevelopmental disorders (NDDs) due to variants of TANC2 gene. METHODS: Clinical data of two children who were admitted to the Third Affiliated Hospital of Zhengzhou University respectively in April 2020 and April 2021 were retrospectively analyzed. Peripheral blood samples of the children and their parents were collected and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. By using "TANC2 gene", "Neurodevelopmental disorders", "Nervous system development disorders", "TANC2" as the key words, similar cases were searched from the CNKI, Wanfang database platform and PubMed database, with the search time set as from the establishment of the database to December 2023. This study was approved by the Third Affiliated Hospital of Zhengzhou University (Ethics No. 2020-57). RESULTS: Case 1 was a 1-year-and-3-month-old girl who had developed convulsions at 1 year old and had three episodes of seizures. Her epilepsy had resolved with the treatment of oxcarbazepine, which was stopped at the age of 2-year-and-7-month. Her language, movement and intelligence development were all normal. Case 2 was a 1-year-and-10-month-old boy, who had developed convulsions at 1 year old. His seizure type was myoclonus, and the frequency was dozens of times a day. His epilepsy had resolved with the treatment of sodium valproate. His language, movement and intelligence development was delayed for about half a year. Genetic analysis showed that both children had harbored novel variants of the TANC2 gene (NM_025185.4), including c.3398G>A (p.Gly1133Glu) and c.2829+1G>A, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the former was rated as likely pathogenic (PS2+PM2_Supporting+PP3) and the latter was rated as pathogenic (PVS1+PS2+PM2_Supporting). Two previous reports were retrieved, which had involved 17 cases and 16 variants. Common features had included autism spectrum disorder (70.6%, 12/17) , intellectual disability (94.1%,16/17) , language and motor retardation (88.2%, 15/17;58.8%, 10/17), facial dysmorphism, epilepsy, ataxia, and thoracic and spinal deformities. CONCLUSION: Variants of the TANC2 gene probably underlay the epilepsy and development delay in these children with NDDs.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Femenino , Lactante , Masculino , Trastornos del Neurodesarrollo/genética , Preescolar , Epilepsia/genética , Secuenciación del Exoma , Mutación , Estudios Retrospectivos
5.
Cell Prolif ; : e13760, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329440

RESUMEN

As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-ß2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.

6.
ACS Appl Mater Interfaces ; 16(40): 54685-54692, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39316760

RESUMEN

Metal adhesive synthesis typically involves heating and solvents, and the resultant adhesives lack degradability and suffer from recycling and sustainable problems. Herein, we developed a solvent-free and chemically degradable biobased adhesive (p(Elp-TA)+PVP) from thioctic acid (TA), its derivative (Elp), and polyvinylpyrrolidone (PVP). Through a rapid acid-triggered cationic ring-opening polymerization of dithiolane at ambient conditions, p(Elp-TA)+PVP adhesive could build up a strong lap shear strength of 1123 kPa in air and an underwater lap shear strength of 534 kPa to the copper plate. Molecular dynamics simulations show that compared to p(Elp-TA), the presence of an appropriate amount of PVP can significantly enhance the binding energy of the adhesive molecules to the metal substrate, and the rapid adhesion of p(Elp-TA)+PVP molecules to metal substrates was achieved through a synergistically dynamic adaptive network enhanced by hydrogen bonding, reversible dynamic bonding, and metal coordination bonding at 40 ps. More importantly, the applied p(Elp-TA)+PVP adhesive could be easily degraded and reverted to its small-molecular-weight lipoic acid species. Upon exposure to dithiothreitol, a green reducing agent, the average molecular weight of the adhesive could quickly decrease from 1603 kDa to 274 Da. This green adhesive constructed by a simple method provides a promising general strategy for developing a controlled degradable and recoverable adhesive from natural resources.

7.
Food Chem ; 460(Pt 2): 140646, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089018

RESUMEN

The study aimed to mine and characterize novel antimicrobial peptides (AMPs) from the Shanxi aged vinegar microbiome. Utilizing machine learning techniques, AlphaFold2 structure prediction and molecular dynamics simulations, six novel AMPs were innovatively mined from 98,539 peptides based on metagenomic data, of which one peptide secreted by Lactobacillus (named La-AMP) was experimentally validated to have remarkable bactericidal effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with high stability and no hemolytic activity. Scanning electron microscopy revealed that La-AMP caused irreversible damage to cell membranes of S. aureus and E. coli, a finding further confirmed by calcein-AM/propidium iodide staining. Additionally, La-AMP induced nucleic acid leakage and reactive oxygen species accumulation in bacterial cells. It was found to bind to DNA gyrase through salt bridges, hydrogen bonds, and hydrophobic interactions, ultimately inducing apoptosis. Thus, La-AMP exhibited encouraging promise as a valuable bioactive component for the development of natural preservatives.


Asunto(s)
Ácido Acético , Escherichia coli , Metagenómica , Simulación de Dinámica Molecular , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Ácido Acético/química , Ácido Acético/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética , Antibacterianos/farmacología , Antibacterianos/química , Microbiota , Pruebas de Sensibilidad Microbiana , Humanos , Lactobacillus/química , Lactobacillus/metabolismo
8.
AAPS J ; 26(5): 90, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107477

RESUMEN

Changes to blood-brain barrier structure and function may affect the delivery of drugs into the brain. It is worthwhile to exploring more study on how the blood-brain barrier changes in structure and function and how that affects drug transport in high-altitude hypoxic environment. The DIA high-throughput sequencing technique indicate that the rats blood-brain barrier has been identified to have 7252 proteins overall and 8 tight junction proteins, among which Claudin-7 was a plateau-specific tight junction protein under high-altitude hypoxia, and based on the interaction network study, 2421 proteins are found to interact with one another, with ZO-1 being the primary target. The results of the projected gene function analysis demonstrated that changes in tight junction proteins are related to the control of TRP channels by inflammatory mediators, the wnt signaling pathway, the ABC transporter system, and drug metabolism-CYP450 enzyme regulation. Additionally, the electron microscopy, the Evans blue combination with confocal laser scanning microscopy, and the Western Blot and RT-qPCR revealed that high-altitude hypoxic environment induces blood-brain barrier tight junctions to open, blood-brain barrier permeability increases, ZO-1, Occludin, Claudin-5 protein and mRNA expression decreased. Our research implies that structural and functional alterations in the blood-brain barrier induced by high altitude hypoxia may impact drug transport inside the central nervous system, and that drug transporters and drug-metabolizing enzymes may be key players in this process.


Asunto(s)
Barrera Hematoencefálica , Proteínas de Uniones Estrechas , Animales , Barrera Hematoencefálica/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/genética , Ratas , Hipoxia/metabolismo , Masculino , Altitud , Ratas Sprague-Dawley , Transporte Biológico , Permeabilidad , Uniones Estrechas/metabolismo
9.
Research (Wash D C) ; 7: 0433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091635

RESUMEN

Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.

10.
Cell Rep ; 43(7): 114513, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39003736

RESUMEN

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.


Asunto(s)
Proliferación Celular , Células Dendríticas , Fibroblastos , Psoriasis , Psoriasis/patología , Psoriasis/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Animales , Células Dendríticas/metabolismo , Ratones , Humanos , Matriz Extracelular/metabolismo , Galectinas/metabolismo , Ratones Endogámicos C57BL , Piel/patología , Piel/metabolismo
11.
J Zhejiang Univ Sci B ; : 1-16, 2024 Jul 09.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38993075

RESUMEN

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.

12.
Angew Chem Int Ed Engl ; 63(39): e202409283, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38962888

RESUMEN

Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111)=-2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋅⋅⋅Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110 °C, pH=1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p : o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to >30 : 1), bromobenzene (15 : 1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.

13.
Int Urol Nephrol ; 56(11): 3647-3655, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38886300

RESUMEN

PURPOSE: To evaluate the association between vitamin D receptor (VDRs) and calcium-sensitive receptor (CaSR) gene polymorphisms and calcium-containing kidney stones (CCKS) in Dai populations. METHODS: A total of 160 CCKS patients and 87 healthy controls were included in this study. CCKS was confirmed using urological computed tomography (CT), plain abdominal radiograph, or surgical lithotomy. Stone samples obtained during surgery were analyzed using infrared spectroscopy. Venous blood and 24-h urine samples were collected and analyzed using Sanger sequencing and high-performance liquid chromatography, respectively. Genetic variants in the VDR gene (rs7975232, rs2228570, rs731236, and rs1544410) and CaSR gene (rs7652589, rs1801725, and rs1042636) were identified through sequence analysis. RESULTS: Analysis of genotype and allele frequencies revealed that the rs7975232 polymorphism in the VDR gene and the rs7652589 allele in the CaSR gene were significantly associated with CCKS. Furthermore, patients carrying the AC and AA genotypes of rs7975232 showed a higher incidence of hypocitraturia compared to those with other genotypes (p < 0.05). The AA and GG genotypes of rs1042636 and the AA genotype of rs7652589 were significantly associated with hypercalciuria (p < 0.05). CONCLUSION: CCKS in this study population may be closely related to hypocitraturia caused by the VDR locus rs7975232 polymorphism and hypercalciuria caused by the CaSR locus rs1042636 and rs7652589 polymorphism.


Asunto(s)
Cálculos Renales , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol , Receptores Sensibles al Calcio , Humanos , Receptores de Calcitriol/genética , Receptores Sensibles al Calcio/genética , Cálculos Renales/genética , Masculino , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Adulto , China/epidemiología , Pueblo Asiatico/genética , Calcio/orina , Calcio/metabolismo , Calcio/sangre , Pueblos del Este de Asia
14.
J Ethnopharmacol ; 331: 118276, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697408

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a classical traditional Chinese medicine formula to invigorating spleen and replenishing qi, Sijunzi decoction (SJZD) is composed of four herbs, which is applied to cure spleen deficiency syndrome (SDS) clinically. The non-polysaccharides (NPSs) of SJZD (SJZD_NPS) are important pharmacodynamic material basis. However, the amelioration mechanism of SJZD_NPS on SDS has not been fully elaborated. Additionally, the contribution of herbs compatibility to efficacy of this formula remains unclear. AIM OF THE STUDY: The aim was to explore the underlying mechanisms of SJZD_NPS on improving SDS, and uncover the scientific connotation in SJZD compatibility. MATERIALS AND METHODS: A strategy integrating incomplete formulae (called "Chai-fang" in Chinese) comparison, pharmacodynamics, gut microbiome, and metabolome was employed to reveal the role of each herb to SJZD compatibility against SDS. Additionally, the underlying mechanism harbored by SJZD_NPS was further explored through targeted metabolomics, network pharmacology, molecular docking, pseudo-sterile model, and metagenomics. RESULTS: SJZD_NPS significantly alleviated diarrhea, disordered secretion of gastrointestinal hormones and neurotransmitters, damage of ileal morphology and intestinal barrier in SDS rats, which was superior to the NPSs of Chai-fang. 16S rRNA gene sequencing and metabolomics analyses revealed that SJZD_NPS effectively restored the disturbed gut microbiota community and abnormal metabolism caused by SDS, showing the most evident recovery. Moreover, SJZD_NPS recalled the levels of partial amino acids, short chain fatty acids and bile acids, which possessed strong binding affinity towards potential targets. The depletion of gut microbiota confirmed that the SDS-amelioration efficacy of SJZD_NPS is dependent on the intact gut microbiome, with the relative abundance of potential probiotics such as Lactobacillus_johnsonii and Lactobacillus_taiwanensis been enriched. CONCLUSION: NPSs in SJZD can improve SDS-induced gastrointestinal-nervous system dysfunction through regulating microbiota-gut-metabolites axis, with four herbs exerting synergistic effects, which indicated the compatibility rationality of SJZD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedades del Bazo , Animales , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratas , Enfermedades del Bazo/tratamiento farmacológico , Ratas Sprague-Dawley , Metabolómica , Simulación del Acoplamiento Molecular , Bazo/efectos de los fármacos , Bazo/metabolismo , Sinergismo Farmacológico , Modelos Animales de Enfermedad , Multiómica
15.
J Adv Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718895

RESUMEN

INTRODUCTION: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE: To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS: Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS: During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS: Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.

16.
Int J Biol Macromol ; 270(Pt 2): 132272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734334

RESUMEN

Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 µg/mL-15.31 µg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.


Asunto(s)
Ácido Acético , Antibacterianos , Bacteriocinas , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Ácido Acético/química , Ácido Acético/metabolismo , Ácido Acético/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Bacteriocinas/genética , Antibacterianos/farmacología , Antibacterianos/química , Microbiota , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Simulación de Dinámica Molecular , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
17.
RSC Adv ; 14(21): 15021-15030, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38720985

RESUMEN

In this work, gallic acid was successfully grafted onto quaternary aminated chitosan to prepare a high efficiency cationic flocculant. The mechanism of flocculation and different influencing factors were studied in detail. The prepared flocculant only needs 60 mg L-1 to achieve a 98.7% and 94.5% removal rate on methyl blue (MB) and Congo red (CR), respectively. The high removal rate (93.2%) of a CR-MB mixed dye also confirms the universality of flocculation. In addition, kaolin as a simulated suspended solid was removed at a rate of 97% in the experiment at a dosage of 3 mg L-1. A zeta potential test showed that it worked best when the potential of the flocculation system was zero; this was because an electrostatic balance was reached between the flocculant and pollutant. Importantly, the three-functional molecules can provide more possibilities to form hydrogen bonds with water molecules, which is conducive to the stretching of flocculant molecular chains in salt water. The flocculant maintained a high stability in four different salt environments and has a positive industrial application significance. Furthermore, the flocculation experiment of the actual wastewater of the printing and dyeing plant found that the dye wastewater changed obviously from turbidity to clarification, which proved the practical application potential of the flocculant. This work provides a feasible idea for the preparation of bio-based flocculants.

18.
Org Lett ; 26(18): 3878-3882, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38678578

RESUMEN

The synthesis of complex alkanes by the tetrafunctionalization of alkynes is limited and challenging. Herein, an unprecedented efficient geminal diazidation and dibromination of terminal alkynes is developed, which provides novel access to structurally diverse organic azides. The approach has exclusive chemo- and regioselectivity and features mild reaction conditions, good tolerance of various functional groups, and more crucially, no metal involved in the reaction, thereby benefiting the late-stage decoration of medicinal molecules. A mechanistic study showed that the current geminal diazidation and dibromination proceeds via a radical pathway.

19.
Environ Sci Technol ; 58(16): 6998-7009, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602777

RESUMEN

Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.


Asunto(s)
Desarrollo Económico , Fósforo , China , Fertilizantes , Agricultura
20.
Biochem Genet ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687434

RESUMEN

Emanuel syndrome is a rare autosomal disorder characterized by microcephaly, heart defects, cleft palate and developmental delay. However, there is a lack of specific prenatal screening for Emanuel syndrome. To screen for early diagnostic marker genes in fetuses with karyotype+der[22]t(11;22)(q23;q11) of Emanuel syndrome. Transcriptome sequencing and clinical trait data of t(11;22)(q23;q11) translocation samples were screened from the GEO database. The differentially expressed genes (DEGs) were screened by principal component analysis of gene expression by R package, and intersections were taken with balanced and unbalanced DEGs. Then, the correlation with clinical traits was determined by WGCNA analysis, GO and KEGG enrichment analysis, and then univariate Cox analysis and Lasso analysis were performed to obtain the key genes. The core regulatory genes were obtained after protein-protein interaction (PPI) network analysis. A total of 50 DEGs were obtained after differential analysis. WGCNA analysis showed that DEG was associated with the chromosomal imbalance and age module. GO and KEGG enrichment analyses showed candidate genes were associated with exocytic vesicle membrane, synaptic vesicle membranes, glycoprotein complex, dystrophin-associated glycoprotein complex and malaria. COX and Lasso analyses yielded 5 hub genes, including ZBED9, RGS20, SGCB, ETV5, and ZAP70. The results of PPI identified the key regulatory gene associated with chromosomal imbalance as the ZAP70 gene. ZAP70 may be a key gene for early diagnosis of Emanuel syndrome in fetuses with+der[22]t(11;22)(q23;q11) karyotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA