Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39141573

RESUMEN

A-kinase-anchoring proteins (AKAPs) act as scaffold proteins that anchor the regulatory subunits of the cAMP-dependent protein kinase A (PKA) to coordinate and compartmentalize signaling elements and signals downstream of Gs-coupled G protein-coupled receptors (GPCRs). The beta-2-adrenoceptor (ß2AR), as well as the Gs-coupled EP2 and EP4 receptor subtypes of the E-prostanoid (EP) receptor subfamily, are effective regulators of multiple airway smooth muscle (ASM) cell functions whose dysregulation contributes of asthma pathobiology. Here, we identify specific roles of the AKAPs Ezrin and Gravin, in differentially regulating PKA substrates downstream of the ß2AR, EP2 receptor (EP2R) and EP4 receptor (EP4R). Knockdown of Ezrin, Gravin, or both in primary human ASM cells caused differential phosphorylation of the PKA substrates vasodilator-stimulated phosphoprotein (VASP) and heat shock protein 20 (HSP20). Ezrin knockdown, as well as combined Ezrin + Gravin knockdown significantly reduced the induction of phospho-VASP and phospho-HSP20 by ß2AR, EP2R, and EP4R agonists. Gravin knockdown inhibited the induction of phospho-HSP20 by ß2AR, EP2R, and EP4R agonists. Knockdown of Ezrin, Gravin, or both also attenuated histamine-induced phosphorylation of MLC20. Moreover, knockdown of Ezrin, Gravin or both suppressed the inhibitory effects of Gs-coupled receptor agonists on cell migration in ASM cells. These findings demonstrate the role of AKAPs in regulating Gs-coupled GPCR signaling and function in ASM, and suggest the therapeutic utility of targeting specific AKAP family members in the management of asthma.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38861343

RESUMEN

Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the level of 5-hmC was higher in asthmatic ASM cells as compared to nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the level of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mechanistic target of rapamycin (mTOR), we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. Moreover, TET1 inhibition alleviated the platelet-derived growth factor (PDGF)-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.

4.
Respir Res ; 24(1): 157, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316833

RESUMEN

BACKGROUND: The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS: Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS: Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS: Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.


Asunto(s)
Actinas , Cortactina , Humanos , Nestina/genética , Vimentina , Cortactina/genética , Citoesqueleto
5.
Cells ; 11(19)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36231009

RESUMEN

Airway smooth muscle cell migration plays a role in the progression of airway remodeling, a hallmark of allergic asthma. However, the mechanisms that regulate cell migration are not yet entirely understood. Nestin is a class VI intermediate filament protein that is involved in the proliferation/regeneration of neurons, cancer cells, and skeletal muscle. Its role in cell migration is not fully understood. Here, nestin knockdown (KD) inhibited the migration of human airway smooth muscle cells. Using confocal microscopy and the Imaris software, we found that nestin KD attenuated focal adhesion sizes during cell spreading. Moreover, polo-like kinase 1 (Plk1) and vimentin phosphorylation at Ser-56 have been previously shown to affect focal adhesion assembly. Here, nestin KD reduced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation), vimentin phosphorylation at Ser-56, the contacts of vimentin filaments to paxillin, and the morphology of focal adhesions. Moreover, the expression of vimentin phosphorylation-mimic mutant S56D (aspartic acid substitution at Ser-56) rescued the migration, vimentin reorganization, and focal adhesion size of nestin KD cells. Together, our results suggest that nestin promotes smooth muscle cell migration. Mechanistically, nestin regulates Plk1 phosphorylation, which mediates vimenitn phosphorylation, the connection of vimentin filaments with paxillin, and focal adhesion assembly.


Asunto(s)
Adhesiones Focales , Filamentos Intermedios , Ácido Aspártico , Movimiento Celular/fisiología , Adhesiones Focales/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Miocitos del Músculo Liso/metabolismo , Nestina/genética , Nestina/metabolismo , Paxillin/metabolismo , Vimentina/metabolismo
6.
Cells ; 11(15)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35954178

RESUMEN

Airway smooth muscle cell migration plays an essential role in airway development, repair, and remodeling. Smooth muscle myosin II has been traditionally thought to localize in the cytoplasm solely and regulates cell migration by affecting stress fiber formation and focal adhesion assembly. In this study, we unexpectedly found that 20-kDa myosin light chain (MLC20) and myosin-11 (MYH11), important components of smooth muscle myosin, were present at the edge of lamellipodia. The knockdown of MLC20 or MYH11 attenuated the recruitment of c-Abl, cortactinProfilin-1 (Pfn-1), and Abi1 to the cell edge. Moreover, myosin light chain kinase (MLCK) colocalized with integrin ß1 at the tip of protrusion. The inhibition of MLCK attenuated the recruitment of c-Abl, cortactin, Pfn-1, and Abi1 to the cell edge. Furthermore, MLCK localization at the leading edge was reduced by integrin ß1 knockdown. Taken together, our results demonstrate that smooth muscle myosin localizes at the leading edge and orchestrates the recruitment of actin-regulatory proteins to the tip of lamellipodia. Mechanistically, integrin ß1 recruits MLCK to the leading edge, which catalyzes MLC20 phosphorylation. Activated myosin regulates the recruitment of actin-regulatory proteins to the leading edge, and promotes lamellipodial formation and migration.


Asunto(s)
Actinas , Miosinas del Músculo Liso , Actinas/metabolismo , Integrina beta1/metabolismo , Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosinas del Músculo Liso/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35329404

RESUMEN

The outbreak of COVID-19 has exerted an enormous impact on society, enterprises, and individuals. It has affected the work attitudes and psychology of employees to a certain extent and their job stress (JS) has also augmented accordingly, leading to increased turnover intention (TI). With the survey responses of 720 employees of small and medium enterprises (SMEs) in China as the sample, we studied the impact of COVID-19 related JS and TI with the moderating effect of perceived organizational support (POS). We utilized linear and multiple regression analysis using Windows SPSS 25. The research findings indicated that the JS caused by COVID-19 in the first affected region (Hubei) was significantly stronger than that in other regions (non-Hubei). JS had a significant positive relationship with employees' TI, while POS had a significant negative connection with employees' TI. We also identified that POS weakened the positive association between JS and employees' TI. These findings are expected to be conducive to and conductive for the upcoming theoretical and empirical investigations as the founding guidelines, as well as for managers in formulating effective policies to curb JS, which would ultimately be helpful in reducing TI.


Asunto(s)
COVID-19 , Estrés Laboral , COVID-19/epidemiología , China/epidemiología , Estudios Transversales , Humanos , Intención , Estrés Laboral/epidemiología
8.
iScience ; 25(2): 103833, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198891

RESUMEN

Asthma is a complex pulmonary disorder with multiple pathological mechanisms. A key pathological feature of chronic asthma is airway remodeling, which is largely attributed to airway smooth muscle (ASM) hyperplasia that contributes to thickening of the airway wall and further drives asthma pathology. The cellular processes that mediate ASM cell proliferation are not completely elucidated. Using multiple approaches, we demonstrate that the adapter protein Abi1 (Abelson interactor 1) is upregulated in ∼50% of ASM cell cultures derived from patients with asthma. Loss-of-function studies demonstrate that Abi1 regulates the activation of Jak2 (Janus kinase 2) and STAT3 (signal transducers and activators of transcription 3) as well as the proliferation of both nonasthmatic and asthmatic human ASM cell cultures. These findings identify Abi1 as a molecular switch that activates Jak2 kinase and STAT3 in ASM cells and demonstrate that a dysfunctional Abi1-associated pathway contributes to the progression of asthma.

9.
Am J Respir Cell Mol Biol ; 66(2): 223-234, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34705620

RESUMEN

Airway smooth muscle thickening, a key characteristic of chronic asthma, is largely attributed to increased smooth muscle cell proliferation and reduced smooth muscle apoptosis. Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that participates in the pathogenesis of airway smooth muscle remodeling. Although the role of Plk1 in cell proliferation and migration is recognized, its function in smooth muscle apoptosis has not been previously investigated. Caspase-9 (Casp9) is a key enzyme that participates in the execution of apoptosis. Casp9 phosphorylation at Ser-196 and Thr-125 is implicated in regulating its activity in cancer cells and epithelial cells. Here, exposure of human airway smooth muscle (HASM) cells to platelet-derived growth factorfor 24 hours enhanced the expression of Plk1 and Casp9 phosphorylation at Ser-196, but not Thr-125. Overexpression of Plk1 in HASM cells increased Casp9 phosphorylation at Ser-196. Moreover, the expression of Plk1 increased the levels of pro-Casp9 and pro-Casp3 and inhibited apoptosis, demonstrating a role of Plk1 in inhibiting apoptosis. Knockdown of Plk1 reduced Casp9 phosphorylation at Ser-196, reduced pro-Casp9/3 expression, and increased apoptosis. Furthermore, Casp9 phosphorylation at Ser-196 was upregulated in asthmatic HASM cells, which was associated with increased Plk1 expression. Knockdown of Plk1 in asthmatic HASM cells decreased Casp9 phosphorylation at Ser-196 and enhanced apoptosis. Together, these studies disclose a previously unknown mechanism that the Plk1-Casp9/3 pathway participates in the controlling of smooth muscle apoptosis.


Asunto(s)
Apoptosis , Asma/patología , Caspasa 9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miocitos del Músculo Liso/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sistema Respiratorio/patología , Serina/metabolismo , Adolescente , Adulto , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Asma/genética , Asma/metabolismo , Estudios de Casos y Controles , Caspasa 9/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Sistema Respiratorio/metabolismo , Serina/genética , Adulto Joven , Quinasa Tipo Polo 1
10.
FASEB J ; 35(9): e21811, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369620

RESUMEN

Actin cytoskeletal reorganization plays an important role in regulating smooth muscle contraction, which is essential for the modulation of various physiological functions including airway tone. The adapter protein Abi1 (Abelson interactor 1) participates in the control of smooth muscle contraction. The mechanisms by which Abi1 coordinates smooth muscle function are not fully understood. Here, we found that contractile stimulation elicited Abi1 acetylation in human airway smooth muscle (HASM) cells. Mutagenesis analysis identified lysine-416 (K416) as a major acetylation site. Replacement of K416 with Q (glutamine) enhanced the interaction of Abi1 with neuronal Wiskott-Aldrich syndrome protein (N-WASP), an important actin-regulatory protein. Moreover, the expression of K416Q Abi1 promoted actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19 and vimentin phosphorylation at Ser-56. Furthermore, p300 is a lysine acetyltransferase that catalyzes acetylation of histone and non-histone proteins in various cell types. Here, we discovered that a portion of p300 was localized in the cytoplasm of HASM cells. Knockdown of p300 reduced the agonist-induced Abi1 acetylation in HASM cells and in mouse airway smooth muscle tissues. Smooth muscle conditional knockout of p300 inhibited actin polymerization and the contraction of airway smooth muscle tissues without affecting myosin light chain phosphorylation and vimentin phosphorylation. Together, our results suggest that contractile stimulation induces Abi1 acetylation via p300 in smooth muscle. Acetylation at K416 promotes the coupling of Abi1 with N-WASP, which facilitates actin polymerization and smooth muscle contraction. This is a novel acetylation-dependent regulation of the actin cytoskeleton in smooth muscle.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Acetilación , Animales , Células Cultivadas , Proteína p300 Asociada a E1A/metabolismo , Humanos , Lisina Acetiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/fisiología , Transducción de Señal/fisiología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
11.
FASEB J ; 35(7): e21674, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34115899

RESUMEN

Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on ß2 adrenoceptor agonists (ß-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with ß-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of ß-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and ß-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and ß-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by ß-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both ß-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Sinergismo Farmacológico , Contracción Muscular , Relajación Muscular , Músculo Liso/fisiología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Tráquea/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Antineoplásicos/farmacología , Benzamidas/farmacología , Humanos , Mesilato de Imatinib/farmacología , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Pirimidinas/farmacología , Transducción de Señal , Tráquea/citología , Tráquea/efectos de los fármacos
12.
Sci Rep ; 10(1): 10667, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606387

RESUMEN

Smooth muscle cell migration is essential for many diverse biological processes such as pulmonary/cardiovascular development and homeostasis. Abi1 (Abelson interactor 1) is an adapter protein that has been implicated in nonmuscle cell migration. However, the role and mechanism of Abi1 in smooth muscle migration are largely unknown. Here, Abi1 knockdown by shRNA reduced human airway smooth muscle cell migration, which was restored by Abi1 rescue. Abi1 localized at the tip of lamellipodia and its protrusion coordinated with F-actin at the leading cell edge of live cells. In addition, we identified profilin-1 (Pfn-1), a G-actin transporter, as a new partner for Abi1. Abi1 knockdown reduced the recruitment of Pfn-1 to the leading cell edge. Moreover, Abi1 knockdown reduced the localization of the actin-regulatory proteins c-Abl (Abelson tyrosine kinase) and N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) at the cell edge without affecting other migration-related proteins including pVASP (phosphorylated vasodilator stimulated phosphoprotein), cortactin and vinculin. Furthermore, we found that c-Abl and integrin ß1 regulated the positioning of Abi1 at the leading edge. Taken together, the results suggest that Abi1 regulates cell migration by affecting Pfn-1 and N-WASP, but not pVASP, cortactin and focal adhesions. Integrin ß1 and c-Abl are important for the recruitment of Abi1 to the leading edge.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Adolescente , Células Cultivadas , Cortactina/metabolismo , Femenino , Adhesiones Focales/metabolismo , Humanos , Integrina beta1/metabolismo , Masculino , Profilinas/metabolismo , Seudópodos/metabolismo , Vinculina/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
13.
Am J Respir Cell Mol Biol ; 62(5): 645-656, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31913659

RESUMEN

It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Pulmón/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Polimerizacion , Proteínas Serina-Treonina Quinasas/metabolismo , Acetilcolina/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Adulto , Biocatálisis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Femenino , Histamina/farmacología , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Paxillin/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serotonina/farmacología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Quinasa Tipo Polo 1
14.
Front Oncol ; 9: 1319, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828041

RESUMEN

Background: ALK and ROS1 rearrangement accounts for 3-6% and 1-3% of non-small cell lung cancers, respectively, while coexistence of them in the same patient is extremely rare. Only three cases have ever been reported with concurrent ALK/ROS1 fusions in the same tumor indicating tumor heterogeneity. Therefore, comprehensive genetic profiling via next-generation sequencing (NGS) is needed to provide fully molecular diagnosis. Case Presentation: A 50-year old Chinese female with resectable stage IB bilateral lung adenocarcinomas (ADCs) harbored EML4 exon 6-ALK exon 19 and TPM3 exon 8-ROS1 exon 35 fusions in the right lower and the left upper tumors, respectively, identified by clinical NGS test targeting 425 cancer-relevant genes. The results were further confirmed at RNA level using RNA-seq. Genomic evolution analysis reveals that these bilateral tumors are synchronous multiple primary lung cancers with no shared somatic alterations for both genes and arm-level copy number variations (CNVs). No recurrence was observed during 12 months of post-surgery follow-up. Conclusions: Our case is the first report of concurrent ALK/ROS1 fusions as distinct driver events of synchronous multiple primary lung cancers, and highlights the importance of individual genetic testing for each of the multiple primary tumors for fully molecular diagnosis and precise treatment decision-making.

15.
Future Oncol ; 15(22): 2585-2593, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31339066

RESUMEN

Aim: Crizotinib has been used to counter MET amplification in different human malignancies. However, transient responses were observed in some patients with rapid acquisition of resistant mutations in MET. Materials & methods: MET mutations stably expressed Ba/F3 cell lines were used for IC50 detection. Signaling pathway analysis was done using 293T cell line. Results: Four MET mutations conferred resistance to crizotinib with sustained activation of downstream signaling pathways of MET. On the other hand, the four MET mutations displayed different response to type II tyrosine kinase inhibitors with variable deterioration of the downstream signals. Conclusion: This study suggested that patients carrying MET V1092L, D1228G or Y1230H mutations could benefit from type II tyrosine kinase inhibitor treatment, but not patients with G1163R or D1228Y/N mutations.


Asunto(s)
Crizotinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Crizotinib/efectos adversos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
16.
Sci Rep ; 9(1): 7555, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101859

RESUMEN

Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/genética , Asma/patología , Proteínas de Ciclo Celular/metabolismo , Paxillin/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Proteínas de Ciclo Celular/genética , División Celular/genética , Línea Celular , Centrosoma/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/patología , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
17.
Am J Respir Cell Mol Biol ; 61(2): 219-231, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30811945

RESUMEN

Airway smooth muscle cells require coordinated protrusion and focal adhesion dynamics to migrate properly. However, the signaling cascades that connect these two processes remain incompletely understood. Glia maturation factor (GMF)-γ has been implicated in inducing actin debranching and inhibiting nucleation. In this study, we discovered that GMFγ phosphorylation at Y104 regulates human airway smooth muscle cell migration. Using high-resolution microscopy coupled with three-dimensional object-based quantitative image analysis software, Imaris 9.2.0, phosphomimetic mutant, Y104D-GMFγ, was enriched at nascent adhesions along the leading edge where it recruited activated neural Wiskott-Aldrich syndrome protein (N-WASP; pY256) to promote actin-branch formation, which enhanced lamellipodial dynamics and limited the growth of focal adhesions. Unexpectedly, we found that nonphosphorylated mutant, Y104F-GMFγ, was enriched in growing adhesions where it promoted a linear branch organization and focal adhesion clustering, and recruited zyxin to increase maturation, thus inhibiting lamellipodial dynamics and cell migration. The localization of GMFγ between the leading edge and focal adhesions was dependent upon myosin activity. Furthermore, c-Abl tyrosine kinase regulated the GMFγ phosphorylation-dependent processes. Together, these results unveil the importance of GMFγ phosphorylation in coordinating lamellipodial and focal adhesion dynamics to regulate cell migration.


Asunto(s)
Movimiento Celular , Adhesiones Focales/metabolismo , Factor de Maduración de la Glia/metabolismo , Miocitos del Músculo Liso/citología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Seudópodos/metabolismo , Bronquios/metabolismo , Adhesión Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Microscopía Fluorescente , Contracción Muscular , Mutación , Fosforilación , Transducción de Señal , Programas Informáticos , Tráquea/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Zixina/metabolismo
18.
Sci Rep ; 8(1): 12635, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135525

RESUMEN

Polo-like kinase 1 (Plk1) has been implicated in mitosis, cytokinesis, and proliferation. The mechanisms that regulate Plk1 expression remain to be elucidated. It is reported that miR-100 targets Plk1 in certain cancer cells. Here, treatment with miR-100 did not affect Plk1 protein expression in human airway smooth muscle cells. In contrast, treatment with miR-509 inhibited the expression of Plk1 in airway smooth muscle cells. Exposure to miR-509 inhibitor enhanced Plk1 expression in cells. Introduction of miR-509 reduced luciferase activity of a Plk1 3'UTR reporter. Mutation of miR-509 targeting sequence in Plk1 3'UTR resisted the reduction of the luciferase activity. Furthermore, miR-509 inhibited the PDGF-induced phosphorylation of MEK1/2 and ERK1/2, and cell proliferation without affecting the expression of c-Abl, a tyrosine kinase implicated in cell proliferation. Moreover, we unexpectedly found that vimentin filaments contacted paxillin-positive focal adhesions. miR-509 exposure inhibited vimentin phosphorylation at Ser-56, vimentin network reorganization, focal adhesion formation, and cell migration. The effects of miR-509 on ERK1/2 and vimentin were diminished in RNAi-resistant Plk1 expressing cells treated with miR-509. Taken together, these findings unveil previously unknown mechanisms that miR-509 regulates ERK1/2 and proliferation by targeting Plk1. miR-509 controls vimentin cytoskeleton reorganization, focal adhesion assembly, and cell migration through Plk1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Adhesiones Focales/fisiología , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vimentina/metabolismo , Regiones no Traducidas 3' , Proteínas de Ciclo Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Humanos , MicroARNs/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Fosforilación , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Vimentina/genética , Quinasa Tipo Polo 1
19.
Respir Res ; 19(1): 4, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304860

RESUMEN

BACKGROUND: Airway smooth muscle contraction is critical for maintenance of appropriate airway tone, and has been implicated in asthma pathogenesis. Smooth muscle contraction requires an "engine" (myosin activation) and a "transmission system" (actin cytoskeletal remodeling). However, the mechanisms that control actin remodeling in smooth muscle are not fully elucidated. The adapter protein Crk-associated substrate (CAS) regulates actin dynamics and the contraction in smooth muscle. In addition, profilin-1 (Pfn-1) and Abelson tyrosine kinase (c-Abl) are also involved in smooth muscle contraction. The interplays among CAS, Pfn-1 and c-Abl in smooth muscle have not been previously investigated. METHODS: The association of CAS with Pfn-1 in mouse tracheal rings was evaluated by co-immunoprecipitation. Tracheal rings from c-Abl conditional knockout mice were used to assess the roles of c-Abl in the protein-protein interaction and smooth muscle contraction. Decoy peptides were utilized to evaluate the importance of CAS/Pfn-1 coupling in smooth muscle contraction. RESULTS: Stimulation with acetylcholine (ACh) increased the interaction of CAS with Pfn-1 in smooth muscle, which was regulated by CAS tyrosine phosphorylation and c-Abl. The CAS/Pfn-1 coupling was also modified by the phosphorylation of cortactin (a protein implicated in Pfn-1 activation). In addition, ACh activation promoted the spatial redistribution of CAS and Pfn-1 in smooth muscle cells, which was reduced by c-Abl knockdown. Inhibition of CAS/Pfn-1 interaction by a decoy peptide attenuated the ACh-induced actin polymerization and contraction without affecting myosin light chain phosphorylation. Furthermore, treatment with the Src inhibitor PP2 and the actin polymerization inhibitor latrunculin A attenuated the ACh-induced c-Abl tyrosine phosphorylation (an indication of c-Abl activation). CONCLUSIONS: Our results suggest a novel activation loop in airway smooth muscle: c-Abl promotes the CAS/Pfn-1 coupling and actin polymerization, which conversely facilitates c-Abl activation. The positive feedback may render c-Abl in active state after contractile stimulation.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Contracción Muscular/fisiología , Miocitos del Músculo Liso/fisiología , Profilinas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tráquea/citología , Tráquea/fisiología
20.
Microb Cell Fact ; 16(1): 202, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137648

RESUMEN

BACKGROUND: Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam secondary metabolite that exhibits broad-spectrum inhibitory activities against filamentous fungal pathogens. The native yield of this chemical is low. It is also a great challenge to synthesize HSAF artificially, due to its complex structure. Understanding the regulatory mechanism underlying HSAF biosynthesis could provide genetic basis for engineering high HSAF-producing strain. The transcription factor Clp is a global regulator that controls bacterial pathogenicity and the expression of one hundred related genes in the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc). Diffusible signal factor (DSF) chemical signaling is the only well-characterized upstream regulatory pathway that involves downstream Clp regulation in Xcc. Such a regulatory hierarchy between DSF signaling and Clp is also conserved in the Gram-negative biological control agent Lysobacter enzymogenes, where the DSF signaling system controls antifungal antibiotic HSAF biosynthesis via Clp. RESULTS: Here, using LLysobacter enzymogenes OH11 as a working organism, we examined a novel upstream regulator, LesR, a LuxR solo that controls Clp expression to modulate HSAF biosynthesis as well as cell aggregation. We found that the overexpression of lesR in strain OH11 almost entirely shut down HSAF production and accelerated cell aggregation. These changed phenotypes could be rescued by the introduction of plasmid-borne clp in the lesR overexpression background. Consistent with findings, we further found that overexpression of lesR led to a decrease in the Clp level. CONCLUSIONS: These results collectively have shown that LesR could exert its function, i.e., HSAF biosynthesis, via downstream Clp. These findings were subsequently validated by a comparative transcriptome analysis, where the regulatory action of LesR was found to largely overlap with that of Clp. Therefore, in addition to the well-known DSF signaling system, the present study reveals that LesR functions as a new upstream regulatory factor of Clp in L. enzymogenes. The key factor was important for the production of HSAF. The strains with high HSAF yield can presumably be constructed by deletion of the negative regulators or overexpression of the positive regulators by genetic engineering.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/biosíntesis , Endopeptidasa Clp/genética , Regulación Bacteriana de la Expresión Génica , Lysobacter/genética , Antifúngicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Lysobacter/fisiología , Metabolismo Secundario , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA