Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Water Sci Technol ; 89(12): 3208-3225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39150421

RESUMEN

A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.


Asunto(s)
Antibacterianos , Carbón Orgánico , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Carbón Orgánico/química , Aguas del Alcantarillado/química , Antibacterianos/química , Contaminantes Químicos del Agua/química , Pirólisis , Biomasa , Sulfatos/química , Ondas Ultrasónicas , Eliminación de Residuos Líquidos/métodos
2.
Environ Sci Pollut Res Int ; 31(20): 29232-29245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573573

RESUMEN

Tire-road wear particles (TRWPs) are formed by friction between the tire and the road. TRWPs are ubiquitous across the globe, especially in sediments. However, the possible effects of TRWPs on tetracycline (TC) in aquatic sediments are unknown. To investigate the potential role of TRWPs as carriers of co-pollutants, this study investigated the pore surface properties and TC adsorption behavior of TRWP-contaminated sediments and explored the TC behavior in water sediments, as well as the role of aging processes and TRWPs abundance. The results showed that the surface morphology of TRWP-contaminated sediments changed and the adsorption capacity of sediments to TC increased. The TC adsorption capacity of sediments contaminated by 2% TRWPs increased from 3.15 to 3.48 mg/g. Moreover, the surface physical and chemical properties of TRWPs after UV aging changed, which further increased the TC adsorption capacity. The TC adsorption capacity of the sediments contaminated by aged TRWPs increased from 3.48 to 3.65 mg/g. Changing the proportion of aged TRWPs, we found that the adsorption capacity of sediments contaminated by different proportions of TRWPs for TC was 2% > 1% > 0.5% > 4% > blank sediment. These results may contribute to predicting the potential environmental risks of TRWPs in aquatic sediments.


Asunto(s)
Sedimentos Geológicos , Tetraciclina , Contaminantes Químicos del Agua , Adsorción , Tetraciclina/química , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química
3.
J Chromatogr Sci ; 55(10): 1051-1058, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977463

RESUMEN

Simultaneous distillation extraction (SDE) is quite useful for the separation of volatile compounds from an analyte when their contents are quite low. In this study, a simplified SDE approach is applied for the extraction of essential oil from Schisandra sphenanthera, with microwave as heating source, [Bmim][Cl] as the medium for pretreatment, and gas chromatography-mass spectrometry as the analytical approach. Consequently, the improvement resulted from [Bmim][Cl] pretreatment is demonstrated by taking comparison with blank experiments. Totally 61 compounds have been detected in the essential oil obtained by using [Bmim][Cl] pretreatment, while without [Bmim][Cl] pretreatment, only 53 compounds can be detected. Moreover, [Bmim][Cl] pretreatment can also resulted in a higher yield of essential oil. The experimental results demonstrate that the simplified SDE coupled with ionic liquid pretreatment is a feasible approach for the extraction of essential oil from S. sphenanthera with high efficiency as 0.85% of essential oil yield has been obtained, and can be potentially extended to the extraction of essential oil or other target volatile compounds with low content.


Asunto(s)
Destilación/métodos , Microondas , Aceites Volátiles/análisis , Aceites Volátiles/química , Schisandra/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Imidazoles/química , Líquidos Iónicos/química
4.
Ultrason Sonochem ; 39: 281-290, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732947

RESUMEN

Microwave and ultrasound have been demonstrated to be outstanding process intensification techniques for transesterification of oil. According to their mechanisms, simultaneous effects can surely bring about better enhancement than sole microwave or ultrasound. Therefore, this study aimed to investigate the important factors and their suitable levels in the KOH-catalyzed transesterification of soybean oil with methanol by using synergistic assistance of microwave-ultrasound (CAMU). The feasibility of application of CAMU in transesterification of oil was demonstrated. When the dosage of methanol, soybean oil and KOH were 15.4g, 34.7g (with methanol-to-oil molar ratio of 12:1) and 1g, respectively, and the microwave power, ultrasonic power, ultrasonic mode, reaction temperature and reaction time were 700W, 800W, 1:0, 65°C and 6min, respectively, the transesterification reached 98.0% of yield, being the highest yield among all the results obtained; while by using 600W of microwave plus stirring instead of CAMU, only 57.4% of yield could be obtained. Compared with other reaction techniques, the transesterification by applying novel CAMU was found to have remarkable advantages. Furthermore, by monitoring the variation of real-time temperature and microwave power during transesterification reactions with different microwave operation time and by taking comparison of the corresponding yield, it was demonstrated that the main reason for the acceleration of microwave-assisted transesterification was the polarization and further activation of reactants caused by microwave irradiation, but not the factor of fast heating.

5.
Nat Commun ; 7: 14036, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004661

RESUMEN

Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h-1 among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

6.
Angew Chem Int Ed Engl ; 55(33): 9548-52, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27135783

RESUMEN

As the electron transfer to CO2 is a critical step in the activation of CO2 , it is of significant importance to engineer the electronic properties of CO2 hydrogenation catalysts to enhance their activity. Herein, we prepared Pt3 Co nanocrystals with improved catalytic performance towards CO2 hydrogenation to methanol. Pt3 Co octapods, Pt3 Co nanocubes, Pt octapods, and Pt nanocubes were tested, and the Pt3 Co octapods achieved the best catalytic activity. Both the presence of multiple sharp tips and charge transfer between Pt and Co enabled the accumulation of negative charges on the Pt atoms in the vertices of the Pt3 Co octapods. Moreover, infrared reflection absorption spectroscopy confirmed that the high negative charge density at the Pt atoms in the vertices of the Pt3 Co octapods promotes the activation of CO2 and accordingly enhances the catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA