Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 337(Pt 1): 118815, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270882

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY: This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS: An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS: The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS: This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.

2.
J Fungi (Basel) ; 10(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39330410

RESUMEN

Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.

3.
Food Chem ; 463(Pt 1): 140960, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39236383

RESUMEN

Highly selective herbicide quinclorac (Qui) is a type of quinoline carboxylic acid hormone herbicide, which has the characteristics of long half-life and difficulty for degradation, causing high risk to the environmental safety. In this study, anti-Qui 8A3 monoclonal antibody (mAb) with good specificity and high affinity (3.89 × 109 L/mol) was prepared, and two kinds of lateral flow immunochromatographic strips (LFICS) including nano-flower nanoparticles (AuNF) - and latex microsphere (LM)- based LFICS were established based on the antibody and signal amplification. The linear range of the AuNF- and LM- based LFICS were 5.31-345.48 ng/mL and 2.52-257.92 ng/mL, respectively. The limit of detection (LOD) of the AuNF- and LM- based LFICS were determined to be 5.31 ng/mL and 2.52 ng/mL, respectively. In summary, the developed LFICS using AuNF and LM as signal amplification reporters exhibited excellent sensitivity and provided the rapid on-site screening of Qui and other analytes in food safety field.

4.
Front Cell Infect Microbiol ; 14: 1379106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193505

RESUMEN

Background: Type VI secretion system (T6SS) is widely present in Gram-negative bacteria and directly mediates antagonistic prokaryote interactions. PAAR (proline-alanine-alanine-arginine repeats) proteins have been proven essential for T6SS-mediated secretion and target cell killing. Although PAAR proteins are commonly found in A. baumannii, their biological functions are not fully disclosed yet. In this study, we investigated the functions of a PAAR protein termed TagP (T6SS-associated-gene PAAR), encoded by the gene ACX60_RS09070 outside the core T6SS locus of A. baumannii strain ATCC 17978. Methods: In this study, tagP null and complement A. baumannii ATCC 17978 strains were constructed. The influence of TagP on T6SS function was investigated through Hcp detection and bacterial competition assay; the influence on environmental fitness was studied through in vitro growth, biofilm formation assay, surface motility assay, survivability in various simulated environmental conditions; the influence on pathogenicity was explored through cell adhesion and invasion assays, intramacrophage survival assay, serum survival assay, and G. melonella Killing assays. Quantitative transcriptomic and proteomic analyses were utilized to observe the global impact of TagP on bacterial status. Results: Compared with the wildtype strain, the tagP null mutant was impaired in several tested phenotypes such as surface motility, biofilm formation, tolerance to adverse environments, adherence to eukaryotic cells, endurance to serum complement killing, and virulence to Galleria melonella. Notably, although RNA-Seq and proteomics analysis revealed that many genes were significantly down-regulated in the tagP null mutant compared to the wildtype strain, there is no significant difference in their antagonistic abilities. We also found that Histone-like nucleoid structuring protein (H-NS) was significantly upregulated in the tagP null mutant at both mRNA and protein levels. Conclusions: This study enriches our understanding of the biofunction of PAAR proteins in A. baumannii. The results indicates that TagP involved in a unique modulation of fitness and virulence control in A. baumannii, it is more than a classic PAAR protein involved in T6SS, while how TagP play roles in the fitness and virulence of A. baumannii needs further investigation to clarify.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Biopelículas , Sistemas de Secreción Tipo VI , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/metabolismo , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Biopelículas/crecimiento & desarrollo , Animales , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteómica , Perfilación de la Expresión Génica , Adhesión Bacteriana/genética , Ratones , Infecciones por Acinetobacter/microbiología , Aptitud Genética , Macrófagos/microbiología , Proteoma
5.
Insects ; 15(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39194829

RESUMEN

Pyrops candelaria is one of the common pests of fruit trees, but the research on the pathogenic microorganisms it may carry is very limited. Therefore, it is essential to reveal the pathogenic microbes it carries and their potential hazards. This study found a new virus from the transcriptome of P. candelaria, which was first reported in P. candelaria and named PyCaV (Pyrops candelaria associated virus). RACE and bioinformatics assay revealed that the full length of PyCaV is 10,855 bp with the polyA tail, containing a single open-reading frame (ORF) encoding a polyprotein consisting of 3171 amino acid (aa). The virus has a typical iflavirus structure, including two rhv domains, an RNA helicase domain (HEL), a 3C cysteine protease domain (Pro), and an RNA-dependent RNA polymerase domain (RdRp). Further phylogenetic analysis revealed that this virus belongs to family Iflaviridae and sequence alignments analysis suggested PyCaV is a new member in an unassigned genus of family Iflaviridae. Further in-depth analysis of the virus infection showed that PyCaV is distributed throughout the whole P. candelaria, including its head, chest, and abdomen, but more PyCaV was identified in the chest. The distribution of PyCaV in different parts of P. candelaria was further explored, which showed that more PyCaV was detected in its piercing-sucking mouthparts and chest viscera. Statistical analysis showed that the PyCaV infection was affected by time and location.

6.
Small ; : e2402854, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087384

RESUMEN

Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.

7.
Elife ; 122024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990939

RESUMEN

The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.


Asunto(s)
Aspergillus flavus , Transducción de Señal , Serina-Treonina Quinasas TOR , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/patogenicidad , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Aflatoxinas/biosíntesis , Aflatoxinas/metabolismo , Regulación Fúngica de la Expresión Génica , Virulencia
8.
Sci Rep ; 14(1): 12704, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830996

RESUMEN

To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.


Asunto(s)
Anquilosis , Células Madre Mesenquimatosas , Osteogénesis , Trastornos de la Articulación Temporomandibular , Animales , Células Madre Mesenquimatosas/metabolismo , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/genética , Anquilosis/metabolismo , Anquilosis/patología , Anquilosis/genética , Proteínas Señalizadoras YAP/metabolismo , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Ovinos , Proliferación Celular , Modelos Animales de Enfermedad , Diferenciación Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Movimiento Celular , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
9.
Toxins (Basel) ; 16(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38787069

RESUMEN

The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.


Asunto(s)
Aflatoxinas , Amidohidrolasas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/enzimología , Aspergillus flavus/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Aflatoxinas/biosíntesis , Aflatoxinas/metabolismo , Aflatoxinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Quitina/metabolismo , Pared Celular/metabolismo
10.
Small ; 20(31): e2310241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441385

RESUMEN

The direct use of mesenchymal stem cells (MSCs) as therapeutics for skin injuries is a promising approach, yet it still faces several obstacles, including limited adhesion, retention, and engraftment of stem cells in the wound area, as well as impaired regenerative and healing functions. Here, DNA-based self-assembled composites are reported that can aid the adhesion of MSCs in skin wounds, enhance MSC viability, and accelerate wound closure and re-epithelialization. Rolling-circle amplification (RCA)-derived DNA flowers, equipped with multiple copies of cyclic Arg-Gly-Asp (cRGD) peptides and anti-von Willebrand factor (vWF) aptamers, act as robust scavengers of reactive oxygen species (ROS) and enable synergistic recognition and adhesion to stem cells and damaged vascular endothelial cells. These DNA structure-aided stem cells are retained at localized wound sites, maintain repair function, and promote angiogenesis and growth factor secretion. In both normal and diabetes-prone db/db mice models with excisional skin injuries, facile topical administration of DNA flower-MSCs elicits rapid blood vessel formation and enhances the sealing of the wound edges in a single dose. DNA composite-engineered stem cells warrant further exploration as a new strategy for the treatment of skin and tissue damage.


Asunto(s)
ADN , Células Madre Mesenquimatosas , Piel , Cicatrización de Heridas , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , ADN/metabolismo , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
11.
Toxins (Basel) ; 16(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535780

RESUMEN

The presence of pathogenic fungi and contamination of mycotoxins in food and feed pose significant threats and challenging issues to food in the world [...].


Asunto(s)
Micotoxinas , Hongos , China , Contaminación de Medicamentos , Alimentos
12.
Anal Chim Acta ; 1299: 342434, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38499420

RESUMEN

BACKGROUND: Cancer as a leading cause of premature death worldwide has become a major threat to human health due to the high incidence and mortality. Monitoring tumor markers are reliable and significantly important for early detection of cancers. In complex biological systems, it is of great urgency but still remains challenging to conceive a fluorescent probe with multiple tumor markers detection property. Hydrogen sulfide (H2S) and pH are two target biomarkers for diagnosis of early cancer. The preparation of a novel probe with H2S and pH dual detection functions is highly anticipated. RESULTS: Herein, a novel sequential detection probe HTPQ-HS for H2S and pH has been developed. In this system, HPQ (2-(2 -hydroxyphenyl)-4(3H)-quinazolinone) structure combined with triphenylamine is applied as the fluorophore, and 2, 4-dinitrophenylsulfonyl group is used as the recognition group. In the presence of H2S, HTPQ-HS is transformed into product HTPQ-OH which shows fluorescence enhancement (29-fold) at 525 nm in less than 4 min and further displays repeatable acid-base responsive ability. HTPQ-HS is able to sequentially response to H2S and pH in living cells and does not react directly with pH. Owing to the low cytotoxicity, HTPQ-HS is able to detect exogenous and endogenous H2S in colon cancer cells and mice, monitor H2S in inflammation model and in foodstuffs. As the environment changes from acidic to alkaline, the fluorescence intensity ratio (I470/I530) of product HTPQ-OH changes remarkably, illustrating the ratiometric fluorescent responsiveness to pH. SIGNIFICANCE AND NOVELTY: A multifunctional fluorescent probe HTPQ-HS for sequential detection of H2S and pH is synthesized. Probe HTPQ-OH realizes the monitoring of dynamic changes in intracellular pH and displays prospective application in security printing. We expect that our work could offer an important guidance on the development of multifunctional fluorescent probes for visualizing H2S and pH in biology and environment.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Animales , Ratones , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/química , Células HeLa , Concentración de Iones de Hidrógeno , Biomarcadores de Tumor
13.
Curr Issues Mol Biol ; 46(2): 1020-1046, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392183

RESUMEN

Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.

14.
Int J Food Microbiol ; 413: 110585, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246023

RESUMEN

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.


Asunto(s)
Acetil-CoA Carboxilasa , Aspergillus flavus , Aspergillus flavus/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Virulencia , Aflatoxina B1 , Mutación
15.
Aging Dis ; 15(2): 851-868, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548941

RESUMEN

Facial nerve (FN) injury seriously affects human social viability and causes a heavy economic and social burden. Although mesenchymal stem cell-derived exosomes (MSC-Exos) promise therapeutic benefits for injury repair, there has been no evaluation of the impact of MSC-Exos administration on FN repair. Herein, we explore the function of MSC-Exos in the immunomodulation of macrophages and their effects in repairing FN injury. An ultracentrifugation technique was used to separate exosomes from the MSC supernatant. Administrating MSC-Exos to SD rats via local injection after FN injury promoted axon regeneration and myelination and alleviated local and systemic inflammation. MSC-Exos facilitated M2 polarization and reduced the M1-M2 polarization ratio. miRNA sequencing of MSC-Exos and previous literature showed that the MAPK/NF-κb pathway was a downstream target of macrophage polarization. We confirmed this hypothesis both in vivo and in vitro. Our findings show that MSC-Exos are a potential candidate for treating FN injury because they may have superior benefits for FN injury recovery and can decrease inflammation by controlling the heterogeneity of macrophages, which is regulated by the p38 MAPK/NF-κb pathway.


Asunto(s)
Exosomas , Traumatismos del Nervio Facial , Células Madre Mesenquimatosas , Ratas , Humanos , Animales , FN-kappa B/metabolismo , Exosomas/metabolismo , Axones , Traumatismos del Nervio Facial/terapia , Ratas Sprague-Dawley , Regeneración Nerviosa , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo
16.
J Agric Food Chem ; 72(1): 726-741, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112282

RESUMEN

RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/metabolismo , Adenina/metabolismo , ARN/metabolismo
17.
J Nanobiotechnology ; 21(1): 396, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904204

RESUMEN

BACKGROUND: This systematic review and meta-analysis aimed to evaluate the efficacy of engineered extracellular vesicles (EEVs) in the treatment of ischemic stroke (IS) in preclinical studies and to compare them with natural extracellular vesicles (EVs). The systematic review provides an up-to-date overview of the current state of the literature on the use of EEVs for IS and informs future research in this area. METHODS: We searched PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus databases for peer-reviewed preclinical studies on the therapeutic effect of EEVs on IS.Databases ranged from the inception to August 1, 2023. The outcome measures included infarct volumes, neurological scores, behavioral scores, apoptosis rates, numbers of neurons, and levels of IL-1ß, IL-6, and TNF-α. The CAMARADES checklist was used to assess the quality and bias risks of the studies. All statistical analyses were performed using RevMan 5.4 software. RESULTS: A total of 28 studies involving 1760 animals met the inclusion criteria. The results of the meta-analysis showed that compared to natural EVs, EEVs reduced infarct volume (percentage: SMD = -2.33, 95% CI: -2.92, -1.73; size: SMD = -2.36, 95% CI: -4.09, -0.63), improved neurological scores (mNSS: SMD = -1.78, 95% CI: -2.39, -1.17; Zea Longa: SMD = -2.75, 95% CI: -3.79, -1.71), promoted behavioral recovery (rotarod test: SMD = 2.50, 95% CI: 1.81, 3.18; grid-walking test: SMD = -3.45, 95% CI: -5.15, -1.75; adhesive removal test: SMD = -2.60, 95% CI: -4.27, -0.93; morris water maze test: SMD = -3.91, 95% CI: -7.03, -0.79), and reduced the release of proinflammatory factors (IL-1ß: SMD = -2.02, 95% CI: -2.77, -1.27; IL-6: SMD = -3.01, 95% CI: -4.47, -1.55; TNF-α: SMD = -2.72, 95% CI: -4.30, -1.13), increasing the number of neurons (apoptosis rate: SMD = -2.24, 95% CI: -3.32, -1.16; the number of neurons: SMD = 3.70, 95% CI: 2.44, 4.96). The funnel plots for the two main outcome measures were asymmetric, indicating publication bias. The median score on the CAMARADES checklist was 7 points (IQR: 6-9). CONCLUSIONS: This meta-analysis shows that EEVs are superior to natural EVs for the treatment of IS. However, research in this field is still at an early stage, and more research is needed to fully understand the potential therapeutic mechanism of EEVs and their potential use in the treatment of IS. PROSPERO REGISTRATION NUMBER: CRD42022368744.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Animales , Accidente Cerebrovascular Isquémico/terapia , Interleucina-6 , Factor de Necrosis Tumoral alfa , Infarto
18.
mBio ; 14(5): e0097723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754565

RESUMEN

IMPORTANCE: Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Aflatoxinas/metabolismo , Autofagia
19.
Front Pharmacol ; 14: 1210667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456755

RESUMEN

Introduction: Type 2 diabetes (T2D) is a multifactorial complex chronic disease with a high prevalence worldwide, and Type 2 diabetes patients with different comorbidities often present multiple phenotypes in the clinic. Thus, there is a pressing need to improve understanding of the complexity of the clinical Type 2 diabetes population to help identify more accurate disease subtypes for personalized treatment. Methods: Here, utilizing the traditional Chinese medicine (TCM) clinical electronic medical records (EMRs) of 2137 Type 2 diabetes inpatients, we followed a heterogeneous medical record network (HEMnet) framework to construct heterogeneous medical record networks by integrating the clinical features from the electronic medical records, molecular interaction networks and domain knowledge. Results: Of the 2137 Type 2 diabetes patients, 1347 were male (63.03%), and 790 were female (36.97%). Using the HEMnet method, we obtained eight non-overlapping patient subgroups. For example, in H3, Poria, Astragali Radix, Glycyrrhizae Radix et Rhizoma, Cinnamomi Ramulus, and Liriopes Radix were identified as significant botanical drugs. Cardiovascular diseases (CVDs) were found to be significant comorbidities. Furthermore, enrichment analysis showed that there were six overlapping pathways and eight overlapping Gene Ontology terms among the herbs, comorbidities, and Type 2 diabetes in H3. Discussion: Our results demonstrate that identification of the Type 2 diabetes subgroup based on the HEMnet method can provide important guidance for the clinical use of herbal prescriptions and that this method can be used for other complex diseases.

20.
Front Bioeng Biotechnol ; 11: 1196043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260827

RESUMEN

Tetrodotoxin (TTX) could result in serious diseases due to its extremely high neurotoxicity. Thus, it is of great importance to measure TTX for food safety. In this study, an anti-TTX monoclonal antibody with good specificity and high affinity was used to develop the immunochromatographic test strips (ICTS). Gold nanoflower (AuNF) with multiple branches and latex microsphere (LM) with large particle size as signal reporters were employed for improving the sensitivity of test strips. Both AuNF and LM probes are stable, and the developed ICTS were specific to TTX, demonstrating no cross-reactivity with other marine toxins. The linear range of AuNF- and LM-based strips for TTX was 9.49-330.98 ng/mL and 5.40-443.19 ng/mL, respectively. The limit of detection (LOD) of AuNF- and LM-based strips was determined to be 9.49 ng/mL and 5.40 ng/mL, respectively. In summary, the developed ICTS based on AuNF and LM signal probes displayed enhancement of sensitivity and provided rapid and specific detection of TTX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA