Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999719

RESUMEN

The timing of potato tuberization is affected by potato ripeness, environmental factors, and polygene regulation. The accurate control of the transition to tuberization has both scientific and practical production value, but the key factors regulating this transition remain unclear. This study grafted an early-maturing potato variety (Favorita) scion to the late-maturing Qingshu 9 variety and demonstrated that a heterologous early-maturing scion can induce early potato formation on a late-maturing rootstock. The transcriptome of functional leaves and stolons of grafted plants was comprehensively analyzed and 593 differentially expressed genes (DEGs) were identified, including 38 transcription factors. Based on gene molecular function analysis and previous reports, we propose that PIF5, bHLH93, CBF3, ERF109, TCP19, and YABBY1 are the key DEGs that induce tuber formation in early- and late-maturing potatoes. The YABBY1 gene was subjected to functional verification. The leaf area of StYABBY1-overexpressing plants was smaller than the wild type and no potato tubercles were formed, while an RNA interference plant line showed no change in leaf area and formed tubers, indicating that StYABBY1 has a role in leaf size regulation and tuber formation.

2.
Biol Trace Elem Res ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012411

RESUMEN

Cadmium (Cd) is a highly toxic heavy metal that can cause severe liver damage in both humans and animals. However, the specific genes responsible for Cd-induced hepatotoxicity are still not fully understood. Therefore, the aim of this study was to identify the key genes associated with Cd-induced liver damage. To achieve this, we utilized the GSE19662 dataset from the Gene Expression Omnibus (GEO), which consisted of rat hepatocyte samples treated with cadmium chloride (CdCl2) as well as control groups. By focusing on rat hepatocytes treated with 0.10 ppm of CdCl2, the study identified 851 differentially expressed genes (DEGs), with 438 genes being upregulated and 413 genes being downregulated. Gene Ontology (GO) analysis revealed that these DEGs were primarily involved in inflammatory responses, xenobiotic metabolic processes, and the response to drugs and xenobiotic stimuli. Finally, the study identified several hub genes, including CYP2E1, CYP3A62, CYP2C11, CYP2C13, CYP2B3, HSP90B1, HSP90AA1, GSTA2, and MAPK8, which were associated with CdCl2-induced liver damage. Furthermore, pathway analysis demonstrated that these hub genes were mainly linked to pathways involved in chemical carcinogenesis, metabolic processes, steroid hormone biosynthesis, retinol metabolism, linoleic acid metabolism, arachidonic acid metabolism, inflammatory mediator regulation, Ras, and protein processing in the endoplasmic reticulum. In conclusion, this study provides important insights into the molecular mechanisms underlying Cd-induced liver damage.

3.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041905

RESUMEN

Interfacial bonding between aramid fibers and epoxy resin is crucial for the mechanical properties of fiber-reinforced epoxy composites. Interfacial stress transfer between resin and fibers bridges microscopic and macroscopic properties. Using micro-Raman spectroscopy for in situ stress measurement offers insights into interface bonding through assessment of interfacial stress transfer characteristics. This study measures stress distribution on loaded microdroplet sample surfaces, analyzes stress transfer at the interface, and proposes an evaluation method using finite element analysis (FEA). The results show that interfacial stress along the fiber decreases from the droplet's edge to center, indicating stress transfer between the fiber and matrix, as evidenced by the stress-dependent Raman shift of aramid fiber. The interface modulus (Eif), derived from the FEA model, effectively reflects interface bonding, with droplet shape influence removed in evaluations. The agreement between the proposed method and the transverse fiber bundle test confirms its applicability. The method offers a direct, non-destructive, and shape-independent way to evaluate the interface of aramid/epoxy composites.

4.
Heliyon ; 10(13): e33319, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027590

RESUMEN

Background: The expression profiles of differentially expressed genes (DEGs) during pupal development have been demonstrated to be vital in age estimation of forensic entomological study. Here, using forensically important Aldrichina grahami (Diptera: Calliphoridae), we aimed to explore the potential of intrapuparial stage aging and postmortem interval (PMI) estimation based on characterization of successive developmental transcriptomes and gene expression patterns. Methods: We collected A. grahami pupae at 11 successive intrapuparial stages at 20 °C and used the RNA-seq technique to build the transcriptome profiles of their intrapuparial stages. The DEGs were identified during the different intrapuparial stages using comparative transcriptome analysis. The selected marker DEGs were classified and clustered for intrapuparial stage aging and PMI estimation and then further verified for transcriptome data validation. Ultimately, we categorized the overall gene expression levels as the dependent variable and the age of intrapuparial A. grahami as the independent variable to conduct nonlinear regression analysis. Results: We redefined the intrapuparial stages of A. grahami into five key successive substages (I, II, III, IV, and V), based on the overall gene expression patterns during pupal development. We screened 99 specific time-dependent expressed genes (stage-specific DEGs) to determine the different intrapuparial stages based on comparison of the gene expression levels during the 11 developmental intrapuparial stages of A. grahami. We observed that 55 DEGs showed persistent upregulation during the development of intrapuparial A. grahami. We then selected four DEGs (act79b, act88f, up and ninac) which presented consistent upregulation using RT-qPCR (quantitative real-time PCR) analysis, along with consideration of the maximum fold changes during the pupal development. We conducted nonlinear regression analysis to simulate the calculations of the relationships between the expression levels of the four selected DEGs and the developmental time of intrapuparial A. grahami and constructed fitting curves. The curves demonstrated that act79b and ninac showed continuous relatively increasing levels. Conclusions: This study redefined the intrapuparial stages of A. grahami based on expression profiles of developmental transcriptomes for the first time. The stage-specific DEGs and those with consistent tendencies of expression were found to have potential in age estimation of intrapuparial A. grahami and could be supplementary to a more accurate prediction of PMI.

5.
Curr Opin Struct Biol ; 88: 102886, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003916

RESUMEN

Protein-protein interactions (PPIs) play a crucial role in cellular function and disease manifestation, with dysfunctions in PPI networks providing a direct link between stressors and phenotype. The dysfunctional Protein-Protein Interactome (dfPPI) platform, formerly known as epichaperomics, is a newly developed chemoproteomic method aimed at detecting dynamic changes at the systems level in PPI networks under stressor-induced cellular perturbations within disease states. This review provides an overview of dfPPIs, emphasizing the novel methodology, data analytics, and applications in disease research. dfPPI has applications in cancer research, where it identifies dysfunctions integral to maintaining malignant phenotypes and discovers strategies to enhance the efficacy of current therapies. In neurodegenerative disorders, dfPPI uncovers critical dysfunctions in cellular processes and stressor-specific vulnerabilities. Challenges, including data complexity and the potential for integration with other omics datasets are discussed. The dfPPI platform is a potent tool for dissecting disease systems biology by directly informing on dysfunctions in PPI networks and holds promise for advancing disease identification and therapeutics.

7.
PLoS One ; 19(6): e0303049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889106

RESUMEN

The Coronavirus Disease 2019(COVID-19) has caused widespread and significant harm globally. In order to address the urgent demand for a rapid and reliable diagnostic approach to mitigate transmission, the application of deep learning stands as a viable solution. The impracticality of many existing models is attributed to excessively large parameters, significantly limiting their utility. Additionally, the classification accuracy of the model with few parameters falls short of desirable levels. Motivated by this observation, the present study employs the lightweight network MobileNetV3 as the underlying architecture. This paper incorporates the dense block to capture intricate spatial information in images, as well as the transition layer designed to reduce the size and channel number of the feature map. Furthermore, this paper employs label smoothing loss to address the inter-class similarity effects and uses class weighting to tackle the problem of data imbalance. Additionally, this study applies the pruning technique to eliminate unnecessary structures and further reduce the number of parameters. As a result, this improved model achieves an impressive 98.71% accuracy on an openly accessible database, while utilizing only 5.94 million parameters. Compared to the previous method, this maximum improvement reaches 5.41%. Moreover, this research successfully reduces the parameter count by up to 24 times, showcasing the efficacy of our approach. This demonstrates the significant benefits in regions with limited availability of medical resources.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/diagnóstico por imagen , COVID-19/diagnóstico , Humanos , SARS-CoV-2/aislamiento & purificación , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
8.
J Virol Methods ; 329: 114971, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876255

RESUMEN

Peste des petis ruminants (PPR) is an acute, highly contagious fatal disease affecting both domestic and wild small ruminants, caused by Morbillivirus caprinae (also known as peste des petis ruminants virus (PPRV)). Herein, a rapid method based on recombinase aided amplification-clustered regularly interspaced short palindromic repeats-Cas12a (RAA-CRISPR Cas12a) to detect PPRV was developed. CRISPR RNAs and RAA primers for PPRV-N (nucleocapsid) and PPRV-M (matrix) fragments were designed. The reaction system was constructed following screening and optimization. Detection could be completed within in 50 minutes at 37°C. Detection of gradient dilutions of plasmids carrying of PPRV N and M gene fragments indicated a minimum limit of detection of 10 copies/µL. There were no cross-reactions with related viruses and all tested lineages of PPRV were detected successfully. The method also showed good repeatability. The detection of clinical samples (previously detected using reverse transcription polymerase chain reaction (RT-PCR)) indicated good consistency between the RAA-CRISPR Cas12a method and RT-PCR. Thus, the RAA-CRISPR Cas12a method for rapid PPRV diagnosis has strong specificity, high sensitivity, and stable repeatability. Moreover, the results can be observed visually under blue or UV light or using lateral flow strips without complex instruments.

9.
Environ Pollut ; 357: 124469, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945194

RESUMEN

Occupational silica exposure caused a serious disease burden of silicosis. There is currently a lack of sensitive and effective biomarkers for silicosis, and the pathogenesis of silicosis is unclear. Exosomes were significant in the pathogenesis of silicosis, and our study was carried out from exosomal proteomics and cytokine analysis. Firstly, the plasma levels of cytokines were detected using a Luminex multiplex assay, and the results indicated that the plasma levels of TNF-α, IL-6, CCL2, CXCL10, and PDGF-AB were significantly higher in silicosis patients than in silica-exposed workers and controls (p < 0.05). After correlation analysis, the plasma levels of cytokines were positively correlated with exosomal protein concentration. Secondly, data-independent acquisition (DIA) was performed on plasma-derived exosomes in the screening population, which identified 88, 151, 293, and 53 differentially expressed proteins (DEPs) in exposure/control, silicosis/control, silicosis/exposure, and silicosis stage Ⅲ/silicosis stage Ⅰ groups respectively. After parallel reaction monitoring (PRM) in an independent verification population, the results indicated that the changing trend of 15 DEPs was coincident in screening and verification results. The result of correlation analysis indicated that the plasma level of TNF-α was negatively correlated with the expression of exosomal DSP, KRT78, SERPINB12, and CALML5. The AUC of combined determination of TNF-α and CALML5 reached 0.900, with a sensitivity of 0.714 and a specificity of 0.933. Overall, our study revealed the exosomal proteomic profiling of silicosis patients, silica-exposed workers, and controls, indicating that exosomes were significant in the pathogenesis of silicosis. It also revealed that the combined of the plasma levels of cytokines and the expression of exosomal DEPs could increase determination efficiency. This study provided directions for the development of silicosis biomarkers and a scientific basis for the pathogenesis research of silicosis in the future.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 693-701, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38926955

RESUMEN

OBJECTIVE: To analyze the factors affecting overall survival (OS) of adult patients with core-binding factor acute myeloid leukemia (CBF-AML) and establish a prediction model. METHODS: A total of 216 newly diagnosed patients with CBF-AML in the First Affiliated Hospital of Zhengzhou University from May 2015 to July 2021 were retrospectively analyzed. The 216 CBF-AML patients were divided into the training and the validation cohort at 7∶3 ratio. The Cox regression model was used to analyze the clinical factors affecting OS. Stepwise regression was used to establish the optimal model and the nomogram. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS: Age(≥55 years old), peripheral blood blast(≥80%), fusion gene (AML1-ETO), KIT mutations were identified as independent adverse factors for OS. The area under the ROC curve at 3-year was 0.772 and 0.722 in the training cohort and validation cohort, respectively. The predicted value of the calibration curve is in good agreement with the measured value. DCA shows that this model performs better than a single factor. CONCLUSION: This prediction model is simple and feasible, and can effectively predict the OS of CBF-AML, and provide a basis for treatment decision.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Pronóstico , Estudios Retrospectivos , Persona de Mediana Edad , Femenino , Masculino , Mutación , Curva ROC , Factores de Unión al Sitio Principal/genética , Nomogramas , Adulto , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteínas Proto-Oncogénicas c-kit/genética , Modelos de Riesgos Proporcionales , Proteínas de Fusión Oncogénica/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética
11.
Asia Pac J Clin Nutr ; 33(2): 213-227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38794981

RESUMEN

BACKGROUND AND OBJECTIVES: In recent years, with the improvement of people's living standards and changes in dietary patterns, dietary knowledge and food preference have been playing an increasingly crucial role in health. The aim of our study was to examine the relationship between dietary knowledge, food preference, and long-short term health status among Chinese adults aged 18-70. METHODS AND STUDY DESIGN: This study employed cross-sectional data from the 2015 China Health and Nutrition Survey obtained from 4822 adults. We utilized self-assessed health status as an indicator of long-term health status and utilized sickness in the last four weeks as a measure of short-term health status. Taking advantage of ordered probit regression, long-term health status was regressed on all predictors, while the binary logistic regression was used to analyze the factors influencing short-term health status. The propensity score matching is employed to account for potential selection bias in analysis, thereby increasing the robustness and credibility of results. RESULTS: The analysis revealed that dietary knowledge and food preference can improve an individual's long-term health status significantly. However, there is no evidence to show that short-term health status is affected by food preference. Furthermore, dietary knowledge is negatively associated with short-term health status. CONCLUSIONS: These findings highlight the importance of dietary education and healthy eating habits in improving the long-term health status of Chinese adults. The study suggests implications for public health strategies aimed at enhancing the health and well-being of Chinese adults.


Asunto(s)
Dieta , Preferencias Alimentarias , Conocimientos, Actitudes y Práctica en Salud , Estado de Salud , Humanos , Adulto , Persona de Mediana Edad , Femenino , Masculino , China , Adulto Joven , Estudios Transversales , Adolescente , Anciano , Conducta Alimentaria , Encuestas Nutricionales , Pueblos del Este de Asia
12.
Angew Chem Int Ed Engl ; 63(23): e202405315, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38588049

RESUMEN

The surface and interface chemistry are critical for controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the functionalization of MXenes with small inorganic ligands; however, few etching methods have been reported on the direct bonding of organic groups to MXene surfaces. In this work, we demonstrated an efficient and rapid strategy for the direct synthesis of 2D Ti3C2Tx MXene nanosheets with organic terminal groups in an organic Lewis acid (trifluoromethanesulfonic acid) solvent, without introducing additional intercalations. The dissolution of aluminum and the subsequent in situ introduction of trifluoromethanesulfonic acid resulted in the extraction of Ti3C2Tx MXene (T=CF3SO3 -) (denoted as CF3SO3H-Ti3C2Tx) flakes with sizes reaching 15 µm and high productivity (over 70 %) of monolayers or few layers. More importantly, the large CF3SO3H-Ti3C2Tx MXene nanosheets had high colloidal stability, making them promising as efficient electrocatalysts for the hydrogen evolution reaction.

13.
Nat Commun ; 15(1): 3509, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664454

RESUMEN

Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices.

14.
Front Immunol ; 15: 1358960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655256

RESUMEN

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Bacterianas , Sistemas CRISPR-Cas , Virus de la Fiebre Porcina Africana/genética , Animales , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/diagnóstico , Proteínas Asociadas a CRISPR/genética , Recombinasas/genética , Recombinasas/metabolismo , Proteínas Virales/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Endodesoxirribonucleasas/genética , Sensibilidad y Especificidad
15.
ACS Appl Mater Interfaces ; 16(14): 17432-17441, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38544402

RESUMEN

Z-scheme heterostructure-based photocatalysts consist of a reduction photocatalyst and an oxidation photocatalyst, enabling them to possess a high capacity for both reduction and oxidation. However, the coupling reaction between photocatalytic H2 generation through water reduction and sterilization using Z-scheme systems has been rarely reported. Herein, 1D W18O49 nanowires embedded over 2D g-C3N4 nanosheets are well-constructed as an integrated Z-scheme heterojunction. Experimental results and density functional theory calculations not only demonstrate the achievement of efficient interfacial charge separation and transport, leading to prolonged lifetime of photogenerated charge carriers, but also directly confirm the mechanism of Z-scheme charge transfer. As expected, the optimized W18O49/g-C3N4 nanostructure exhibits superior photocatalytic sterilization activity against Staphylococcus aureus as well as excellent H2 generation performance under visible-light irradiation (λ ≥ 420 nm). Due to its nontoxic nature, W18O49/g-C3N4 holds great potential in eradicating bacterial infections in living organisms.


Asunto(s)
Bacterias , Luz , Isótopos de Oxígeno , Catálisis
16.
ACS Omega ; 9(11): 13067-13080, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524427

RESUMEN

In the realm of postcombustion carbon capture, diethylenetriamine (DETA), recognized for its substantial CO2 absorption capacity, presents a formidable challenge due to its corrosive impact on equipment. This study delves into the corrosion behavior of 20# carbon steel immersed in DETA solutions under varying conditions, employing weight loss and electrochemical methods. The investigation incorporates scanning electron microscopy/energy-dispersive spectroscopy and X-ray diffraction analyses for characterization. Corrosion experiments were also conducted in monoethanolamine (MEA) solutions for a comparative analysis. Results from the corrosion tests in DETA solutions mirror the temperature-dependent corrosion rate (CR) observed in MEA. However, a distinctive trend emerges as the CO2 loading of DETA increases from 0.2 mol CO2/mol amine to 1.2 mol CO2/mol amine, leading to a continuous decrease in the CR of carbon steel-contrary to MEA solutions. This anomaly is attributed to DETA's robust complexing ability with metal ions and its elevated solubility of Fe2+ in solution. Additionally, an examination of the corrosion mechanism in the presence of oxygen was conducted through characterizing the specimen surface and solution precipitates postexperiment. The absence of a protective FeCO3 layer can be attributed to insufficient concentrations of free Fe2+ and CO32- in the solution, failing to achieve the minimum saturation required for protective film formation. The insights gained from studying the corrosion behavior of carbon steel in DETA solutions lay the groundwork for subsequent developments in corrosion inhibitors.

17.
Clin Exp Med ; 24(1): 57, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546813

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. The current risk stratification system is essential but remains insufficient to select the best schedules. Cysteine-rich protein 1 (CSRP1) is a member of the CSRP family and associated with poor clinicopathological features in many tumors. This study aimed to explore the clinical significance and molecular mechanisms of cysteine- and glycine-rich protein 1 (CSRP1) in AML. RT-qPCR was used to detect the relative expression of CSRP1 in our clinical cohort. Functional enrichment analysis of CSRP1-related differentially expressed genes was carried out by GO/KEGG enrichment analysis, immune cell infiltration analysis, and protein-protein interaction (PPI) network. The OncoPredict algorithm was implemented to explore correlations between CSRP1 and drug resistance. CSRP1 was highly expressed in AML compared with normal samples. High CSRP1 expression was an independent poor prognostic factor. Functional enrichment analysis showed neutrophil activation and apoptosis were associated with CSRP1. In the PPI network, 19 genes were present in the most significant module, and 9 of them were correlated with AML prognosis. The high CSRP1 patients showed higher sensitivity to 5-fluorouracil, gemcitabine, rapamycin, cisplatin and lower sensitivity to fludarabine. CSRP1 may serve as a potential prognostic marker and a therapeutic target for AML in the future.


Asunto(s)
Cisteína , Leucemia Mieloide Aguda , Humanos , Cisteína/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Perfilación de la Expresión Génica , Glicina/genética
18.
Adv Mater ; 36(23): e2308748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38404231

RESUMEN

Bone implants for different body parts require varying mechanical properties, dimensions, and biodegradability rates. Currently, it is still challenging to produce artificial bones with perfect compatibility with human bones. In this study, a silk-fabric reinforced silk material (SFS) composed of pure silk with exceptional biocompatibility, osteogenesis, and biodegradability is reported, and demonstrates its outstanding performance as a bone implant material. The SFS is fabricated using a simple hot-pressing technique, with degummed silk fabric as the reinforcement and silk fibroin as the matrix. The SFS as a self-reinforced composite, has exceptional mechanical properties due to the almost perfect interface between the matrix and reinforcement. More importantly, its mechanical properties, biodegradability rates, and density can be tailored by adjusting the reinforcement structure and the ratio of the reinforcement to the matrix to align with the requirements for bone implantation in different parts of the human body. Besides, the SFS can improve osteoblastic proliferation and increase osteogenic activity, which is not the case with clinically used titanium alloy artificial bone. Therefore, the SFS holds significant potential to replace conventional metal or ceramic implants in the field of medical fracture repair.


Asunto(s)
Osteogénesis , Seda , Seda/química , Osteogénesis/efectos de los fármacos , Animales , Ensayo de Materiales , Sustitutos de Huesos/química , Proliferación Celular/efectos de los fármacos , Humanos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Materiales Biocompatibles/química , Ratones , Fibroínas/química , Huesos
19.
Small ; 20(28): e2311182, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38332446

RESUMEN

Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.

20.
Viruses ; 16(2)2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38400087

RESUMEN

African swine fever (ASF) is a lethal contagious viral disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV). The pandemic spread of ASF has caused severe effects on the global pig industry. Whole-genome sequencing provides crucial information for virus strain characterization, epidemiology analysis and vaccine development. Here, we evaluated the performance of next-generation sequencing (NGS) in generating ASFV genome sequences from clinical samples. Thirty-four ASFV-positive field samples including spleen, lymph node, lung, liver and blood with a range of Ct values from 14.73 to 25.95 were sequenced. For different tissue samples collected from the same sick pigs, the proportion of ASFV reads obtained from the spleen samples was 3.69-9.86 times higher than other tissues. For the high-viral-load spleen samples (Ct < 20), a minimum of a 99.8% breadth of ≥10× coverage was revealed for all the samples. For the spleen samples with Ct ≥ 20, 6/12 samples had a minimum of a 99.8% breadth of ≥10× coverage. A high average depth of sequencing coverage was also achieved from the blood samples. According to our results, high-quality ASFV whole-genome sequences could be obtained from the spleen or blood samples with Ct < 20. The high-quality ASFV genome sequence generated in this study was further used for the high-resolution phylogenetic analysis of the ASFV genomes in the early stage of the ASF epidemic in China. Our study demonstrates that NGS may act as a useful tool for efficient ASFV genome characterization, providing valuable information for disease control.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Filogenia , Sus scrofa , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA