RESUMEN
Objective: To study whether transvaginal ultrasound (TVUS) affected the uterine peristalsis (UP) patterns in nonpregnant participants. Design: Institutional review board-approved, prospective observational cohort study. The noninvasive UP imaging (UPI) system uses electrode patches placed on the patient's skin just above the pubic bone and on the low back to quantify the 3-dimensional electrical activation pattern during UP by calculating peristalsis frequency, duration, magnitude, and activation ratio. A 20-minute UPI scan was completed without TVUS followed by a 10-minute UPI scan acquired simultaneously during TVUS examination as a comparison. Setting: University medical center. Patients: Twenty-eight participants with regular menstrual cycles not taking hormonal medication and with a normal uterus were included in analysis. Interventions: Subjects were imaged longitudinally during the four phases of the menstrual cycle (menses, proliferative, periovulatory, and secretory) with a UPI scan followed by concurrent TVUS and UPI scan. Serum hormone levels (estradiol and progesterone) and TVUS evaluating follicular development were obtained during each visit to confirm menstrual cycle phase. Main Outcome Measures: Duration, frequency, magnitude, and activation ratio of the UP waves. Results: With the use of simultaneous TVUS, UP waves had a change in at least one of the outcomes measured in all visits. The frequency, magnitude, and duration were significantly higher with TVUS use in all phases of the menstrual cycle. The activation ratio was higher with TVUS during all phases except the periovulatory phase. Conclusions: This study demonstrated that TVUS may inherently affect UP waves. Therefore, noninvasive technology may more accurately measure physiologic peristalsis waves.
RESUMEN
Nonsymmetrical oxygen-bridged binuclear copper centers have been proposed and modeled as intermediates and transition states in several CâH oxidation pathways, leading to the postulation that structural dissymmetry enhances the reactivity of the bridging oxygen. However, experimentally characterizing the structure and reactivity of these transient species is remarkably challenging. Here, we report the high-pressure synthesis of a metastable nonsymmetrical dicopper-µ-oxo compound with exceptional reactivity toward the mono-oxygenation of aliphatic CâH bonds. The nonequivalent coordination environment of copper stabilizes localized mixed valency and greatly enhances the hydrogen atom abstraction activity of the bridging oxygen, enabling room-temperature hydroxylation of methane under pressure. These findings highlight the role of dissymmetry in the reactivity of binuclear copper centers and demonstrate precise control of molecular structures by mechanical means.
RESUMEN
Bone aging, a major global health concern, is the natural decline in bone mass and strength. Concurrently, extracellular vesicles (EVs), tiny membrane-bound particles produced by cells, have gained recognition for their roles in various physiological processes and age-related diseases. The interaction between EVs and bone aging is of growing interest, particularly their effects on bone metabolism, which become increasingly critical with advancing age. In this review, we explored the biology, types, and functions of EVs and emphasized their regulatory roles in bone aging. We examined the effects of EVs on bone metabolism and highlighted their potential as biomarkers for monitoring bone aging progression. Furthermore, we discussed the therapeutic applications of EVs, including targeted drug delivery and bone regeneration, and addressed the challenges associated with EV-based therapies, including the technical complexities and regulatory issues. We summarized the current research and clinical trials investigating the role of EVs in bone aging and suggested future research directions. These include the potential for personalized medicine using EVs and the integration of EV research with advanced technologies to enhance the management of age-related bone health. This analysis emphasized the transformative potential of EVs in understanding and managing bone aging, thereby marking a significant advancement in skeletal health research.
RESUMEN
Current therapies against pancreatic ductal adenocarcinoma (PDAC) have limited clinical benefits owing to tumor heterogeneity and their unique immunosuppressive microenvironments. The eukaryotic initiation factor (eIF) 4F complex is involved in regulating translation and various downstream carcinogenic signaling pathways. We report that eIF4G1, one of the subunits of eIF4F, is overexpressed in cancer cells and cancer-associated fibroblasts, and this correlates with poor prognosis in patients with PDAC. In PDAC mice, eIF4G1 inhibition limits tumor progression and prolongs overall survival, especially when combined with PD1/PDL1 antagonists and gemcitabine. Mechanistically, eIF4G1 inhibition hinders the production of cytokines and chemokines that promote fibrosis and inhibit cytotoxic T cell chemotaxis. Moreover, eIF4G1 inhibition impairs integrinß1 protein translation and exerts tumor suppression effects through the FAK-ERK/AKT signaling pathway. These findings highlight the effects of eIF4G1 on tumor immune dependence and independence and identify eIF4G1 as a promising therapeutic target for PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Factor 4G Eucariótico de Iniciación , Neoplasias Pancreáticas , Microambiente Tumoral , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Microambiente Tumoral/inmunología , Animales , Humanos , Factor 4G Eucariótico de Iniciación/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Línea Celular Tumoral , Transducción de Señal , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Integrina beta1/metabolismo , Integrina beta1/genética , Linfocitos T Citotóxicos/inmunología , Ratones Endogámicos C57BL , GemcitabinaRESUMEN
Infected wounds pose a significant clinical challenge due to bacterial resistance, recurrent infections, and impaired healing. Reactive oxygen species (ROS)-based strategies have shown promise in eradicating bacterial infections. However, the excess ROS in the infection site after treatments may cause irreversible damage to healthy tissues. To address this issue, we developed bovine serum albumin-iridium oxide nanoclusters (BSA-IrOx NCs) which enable photo-regulated ROS generation and scavenging using near infrared (NIR) laser. Upon NIR laser irradiation, BSA-IrOx NCs exhibit enhanced photodynamic therapy, destroying biofilms and killing bacteria. When the NIR laser is off, the nanoclusters' antioxidant enzyme-like activities prevent inflammation and repair damaged tissue through ROS clearance. Transcriptomic and metabolomic analyses revealed that BSA-IrOx NCs inhibit bacterial nitric oxide synthase, blocking bacterial growth and biofilm formation. Furthermore, the nanoclusters repair impaired skin by strengthening cell junctions and reducing mitochondrial damage in a fibroblast model. In vivo studies using rat infected wound models confirmed the efficacy of BSA-IrOx NCs. This study presents a promising strategy for treating biofilm-induced infected wounds by regulating the ROS microenvironment, addressing the challenges associated with current ROS-based antibacterial approaches.
RESUMEN
Background: To evaluate the prognostic value of blood urea nitrogen/creatinine ratio (BUN/SCr) and cystatin C (Cys C) in patients with renal cell carcinoma (RCC) after radical nephrectomy. Methods: The study analysed 348 patients with RCC who underwent radical nephrectomy. The optimal cut-off was obtained based on the ROC of specific survival outcomes and the maximum Youden index. The patients were divided into four groups: Group 1 (low BUN/SCr-low Cys C), Group 2 (low BUN/SCr-high Cys C), Group 3 (high BUN/SCr-low Cys C), and Group 4 (high BUN/SCr-high Cys C). The primary endpoint was cancer-specific survival (CSS), and the secondary endpoint was disease-free survival (DFS).
RESUMEN
The degradability of hydrogels plays a pivotal role in bone regeneration, yet its precise effects on the bone repair process remain poorly understood. Traditional studies have been limited by the use of hydrogels with insufficient variation in degradation properties for thorough comparative analysis. Addressing this gap, our study introduces the development of matrix metalloproteinase (MMP)-responsive hydrogels engineered with a tunable degradation rate, specifically designed for bone regeneration applications. These innovative hydrogels are synthesized by integrating MMP-sensitive peptides, which exhibit chirality-transferred amino acids, with norbornene (NB)-modified 8-arm polyethylene glycol (PEG) macromers to form the hydrogel network. The degradation behavior of these hydrogels is manipulated through the chirality of the incorporated peptides, resulting in the classification into L, LD, and D hydrogels. Remarkably, the L hydrogel variant shows a significantly enhanced degradation rate, both in vitro and in vivo, which in turn fosters bone regeneration by promoting cell migration and upregulating osteogenic gene expression. This research highlights the fundamental role of hydrogel degradability in bone repair and lays the groundwork for the advancement of degradable hydrogel technologies for bone regeneration, offering new insights and potential for future biomaterials development.
Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Hidrogeles , Osteogénesis , Péptidos , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Péptidos/química , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Polietilenglicoles/química , Ratones , Metaloproteinasas de la Matriz/metabolismo , Humanos , Norbornanos/química , Movimiento Celular/efectos de los fármacos , Ingeniería de Tejidos/métodosRESUMEN
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Asunto(s)
Huesos , Citocinas , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiología , Huesos/fisiología , Huesos/metabolismo , Citocinas/metabolismo , Homeostasis/fisiología , AnimalesRESUMEN
Among middle-aged and older people, balanced and nutritious diets are the foundation for maintaining bone health and preventing osteoporosis. This study is aimed at investigating the link between dietary folic acid intake and the risk of osteoporosis among middle-aged and older people. A total of 20,686 people from the National Health and Nutritional Examination Survey (NHANES) 2007-2010 are screened and included, and 5312 people aged ≥45 years with integral data are ultimately enrolled in evaluation. Demographics and dietary intake-related data are gathered and analyzed, and the odds ratio (OR) and 95% confidence interval (CI) of each tertile category of dietary folic acid intake and each unit increase in folic acid are assessed via multivariate logistic regression models. On this basis, the receiver operating characteristic (ROC) curve is used to identify the optimal cutoff value of dietary folic acid intake for indicating the risk of osteoporosis. Of 5312 people with a mean age of 62.4 ± 11.0 years old, a total of 513 people with osteoporosis are screened, and the dietary folic acid intake amount of the osteoporosis group is significantly lower than that of the non-osteoporosis group (p < .001). The lowest tertile category is then used to act as a reference category, and a higher dietary folic acid intake amount is observed to be positively related to lower odds for risk of osteoporosis. This trend is also not changed in adjustments for combinations of different covariates (p all < .05). Based on this, a dietary folic acid intake of 475.5 µg/day is identified as an optimal cutoff value for revealing osteoporosis. Collectively, this nationwide population-based study reveals that a higher daily dietary folic acid intake has potential protective effects on osteoporosis in middle-aged and older people.
RESUMEN
With the increasing problem of antimicrobial drug resistance, the search for new antimicrobial agents has become a crucial task in the field of medicine. Antimicrobial peptides, as a class of naturally occurring antimicrobial agents, possess broad-spectrum antimicrobial activity and lower risk of resistance development. However, traditional screening methods for antimicrobial peptides are inefficient, necessitating the development of an efficient screening model. In this study, we aimed to develop an ensemble learning model for the identification of antimicrobial peptides, named E-CLEAP, based on the Multilayer Perceptron Classifier (MLP Classifier). By considering multiple features, including amino acid composition (AAC) and pseudo amino acid composition (PseAAC) of antimicrobial peptides, we aimed to improve the accuracy and generalization ability of the identification process. To validate the superiority of our model, we employed five-fold cross-validation and compared it with other commonly used methods for antimicrobial peptide identification. In the experimental results on an independent test set, E-CLEAP achieved accuracies of 97.33% and 84% for the AAC and PseAAC features, respectively. The results demonstrated that our model outperformed other methods in all evaluation metrics. The findings of this study highlight the potential of the E-CLEAP model in enhancing the efficiency and accuracy of antimicrobial peptide screening, which holds significant implications for drug development, disease treatment, and biotechnology advancement. Future research can further optimize the model by incorporating additional features and information, as well as validating its reliability on larger datasets and in real-world environments. The source code and all datasets are publicly available at https://github.com/Wangsicheng52/E-CLEAP.
Asunto(s)
Péptidos Antimicrobianos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Aprendizaje Automático , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aminoácidos/químicaRESUMEN
Compared to other nanovectors, liposomes exhibit unique advantages, such as good biosafety and high drug-loading capacity. However, slow drug release from conventional liposomes makes most payloads unavailable, restricting the therapeutic efficacy. Therefore, in the last â¼20 years, enzyme-responsive liposomes have been extensively investigated, which liberate drugs under the stimulation of enzymes overexpressed at disease sites. In this review, we elaborate on the research progress on enzyme-responsive liposomes. The involved enzymes mainly include phospholipases, particularly phospholipase A2, matrix metalloproteinases, cathepsins, and esterases. These enzymes can cleave ester bonds or specific peptide sequences incorporated in the liposomes for controlled drug release by disrupting the primary structure of liposomes, detaching protective polyethylene glycol shells, or activating liposome-associated prodrugs. Despite decades of efforts, there are still a lack marketed products of enzyme-responsive liposomes. Therefore, more efforts should be made to improve the safety and effectiveness of enzyme-responsive liposomes and address the issues associated with production scale-up.
Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Liposomas , Humanos , Animales , Profármacos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Enzimas/metabolismoRESUMEN
Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.
Asunto(s)
Bioimpresión , Organoides , Medicina Regenerativa , Ingeniería de Tejidos , Organoides/citología , Humanos , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Animales , Medicina Regenerativa/métodos , TintaRESUMEN
Osteoporosis (OP) is a systematic bone disease characterized by low bone mass and fragile bone microarchitecture. Conventional treatment for OP has limited efficacy and long-term toxicity. Synthetic biology makes bacterial extracellular vesicle (BEVs)-based therapeutic strategies a promising alternative for the treatment of OP. Here, we constructed a recombinant probiotics Escherichia coli Nissle 1917-pET28a-ClyA-BMP-2-CXCR4 (ECN-pClyA-BMP-2-CXCR4), in which BMP-2 and CXCR4 were overexpressed in fusion with BEVs surface protein ClyA. Subsequently, we isolated engineered BEVs-BMP-2-CXCR4 (BEVs-BC) for OP therapy. The engineered BEVs-BC exhibited great bone targeting in vivo. In addition, BEVs-BC had good biocompatibility and remarkable ability to promote osteogenic differentiation of BMSCs. Finally, the synthetic biology-based BEVs-BC significantly prevented the OP in an ovariectomized (OVX) mouse model. In conclusion, we constructed BEVs-BC with both bone-targeting and bone-forming in one-step using synthetic biology, which provides an effective strategy for OP and has great potential for industrialization.
Asunto(s)
Vesículas Extracelulares , Osteoporosis , Animales , Ratones , Vesículas Extracelulares/metabolismo , Osteogénesis , Osteoporosis/terapia , Transducción de Señal , Biología SintéticaRESUMEN
BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.
Asunto(s)
Resorción Ósea , Osteoporosis , Ratones , Animales , Osteoclastos , Nanomedicina , Osteoporosis/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Huesos/patología , Diferenciación CelularRESUMEN
OBJECTIVE: To evaluate and summarize the association between interleukin (IL) concentrations and diabetes mellitus (DM) and its complications. METHODS: Meta-analyses and eligible individual studies of observational studies investigating the associations between IL and DM and its complications were included. The random-effects model was used to estimate the summary effect, and the heterogeneity among studies was assessed using the Q-statistic and the I2 metric; The Egger's regression and the χ2 test were used to test for small study effects and excess significance bias. RESULTS: This overview identified 34 meta-analyses that investigated the association between IL concentrations and DM and its complications. Meta-analyses of prospective studies indicated that elevated circulating IL-6 and IL-1ß had predictive value for the incident of type 2 diabetes mellitus (T2DM), type 1 diabetes mellitus (T1DM) as well as gestational diabetes mellitus (GDM), and the overall Hazard Ratio (HR) of T2DM was 1.28 (95 % CI: 1.17, 1.40; Pï¼0.001) per 1 log pg/ml increment in IL-6 levels, however, there was no correlation between circulating IL-10 levels and DM. Meanwhile, the increased level of IL-6 was significantly associated several diabetic complications (Diabetic kidney disease[DKD], diabetic peripheral neuropathy[DPN], and cognitive impairment[CI]), and for the diabetic retinopathy (DR), the levels of IL-1ß, IL-8 and IL-10 in the aqueous humor and vitreous humor, but not the blood were significantly correlated with it. CONCLUSION: Multiple ILs, such as the IL-6 and IL-1ß, are definitively linked to DM and its complications, and they may be new targets for the diagnosis and treatment, but stronger evidence needs to be confirmed by prospective studies with larger sample sizes and longer observation periods.
Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Interleucina-10 , Interleucina-6 , Estudios Prospectivos , Revisiones Sistemáticas como Asunto , Interleucina-1betaRESUMEN
Materials with low intrinsic lattice thermal conductivity are crucial in the pursuit of high-performance thermoelectric (TE) materials. Here, the TE properties of PbBi2Te4-xSex (0 ≤ x ≤ 0.6) samples are systematically investigated for the first time. Doping with Se in PbBi2Te4 can simultaneously reduce carrier concentration and increase carrier mobility. The Seebeck coefficient is significantly increased by doping with Se, based on the density functional theory calculation, it is shown to be due to the increased bandgap and electronic density of states. In addition, the lattice strain is enhanced due to the difference in the size of Se and Te atoms, and the multidimensional defects formed by Se doping, such as vacancies, dislocations, and grain boundaries, enhance the phonon scattering and reduce the lattice thermal conductivity by about 37%. Finally, by using Se doping to reduce carrier concentration and thermal conductivity, a large ZTmax = 0.56 (at 574K) is achieved for PbBi2Te3.5Se0.5, which is around 64% larger than those of the PbBi2Te4 pristine sample. This work not only demonstrates that PbBi2Te4 is a potential medium temperature thermoelectric material, but also provides a reference for enhancing thermoelectric properties through defect and energy band engineering.
RESUMEN
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
RESUMEN
The effects of the roasting-assisted aqueous ethanol extraction of peanut oil on the structure and functional properties of dreg proteins were investigated to interpret the high free oil yield and provide a basis for the full utilization of peanut protein resources. The roasting-assisted aqueous ethanol extraction of peanut oil obtained a free oil yield of 97.74% and a protein retention rate of 75.80% in the dreg. The water-holding capacity of dreg proteins increased significantly, and the oil-holding capacity and surface hydrophobicity decreased significantly, reducing the binding ability with oil and thus facilitating the release of oil. Although the relative crystallinity and denaturation enthalpy of the dreg proteins decreased slightly, the denaturation temperatures remained unchanged. Infrared and Raman spectra identified decreases in the C-H stretching vibration, Fermi resonance and α-helix, and increases in random coil, ß-sheet and ß-turn, showing a slight decrease in the overall ordering of proteins. After the roasting treatment, 62.57-135.33% of the protein functional properties were still preserved. Therefore, the roasting-assisted aqueous ethanol extraction of peanut oil is beneficial for fully utilizing the oil and protein resources in peanuts.
RESUMEN
Osteoporotic fractures are the most severe complications of osteoporosis, characterized by poor bone quality, difficult realignment and fixation, slow fracture healing, and a high risk of recurrence. Clinically managing these fractures is relatively challenging, and in the context of rapid aging, they pose significant social hazards. The rapid advancement of disciplines such as biophysics and biochemistry brings new opportunities for future medical diagnosis and treatment. However, there has been limited attention to precision diagnosis and treatment strategies for osteoporotic fractures both domestically and internationally. In response to this, the Chinese Medical Association Orthopaedic Branch Youth Osteoporosis Group, Chinese Geriatrics Society Geriatric Orthopaedics Committee, Chinese Medical Doctor Association Orthopaedic Physicians Branch Youth Committee Osteoporosis Group, and Shanghai Association of Integrated Traditional Chinese and Western Medicine Osteoporosis Professional Committee have collaborated to develop this consensus. It aims to elucidate emerging technologies that may play a pivotal role in both diagnosis and treatment, advocating for clinicians to embrace interdisciplinary approaches and incorporate these new technologies into their practice. Ultimately, the goal is to improve the prognosis and quality of life for elderly patients with osteoporotic fractures.
RESUMEN
Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.