RESUMEN
Graphene aerogels, as a novel type of carbon-based composite material, have shown great potential in the field of wave absorption due to its characteristics of high conductivity, adjustable structure and good corrosion resistance. It is of great significance to precisely control the dielectric properties of graphene aerogel composites by effectively adjusting their microstructures through the preparing process design, ultimately leading to improve their wave-absorbing performances. In this study, two kinds of graphene/cellulose aerogel composites with three-dimensional porous structures, were successfully prepared using graphene and short staple cellulose as raw materials via the freeze-drying method based on the dissolution-regeneration strategy. A comparative analysis was conducted to examine the differences of microstructures, dielectric properties and corresponding electromagnetic wave absorption performances, which reveals that the graphene/cellulose aerogel composites with graphene nanosheets incorporated into the cellulose matrix realize superior absorbing performances. The graphene/cellulose aerogel composite with a 32 wt% graphene addition realizes effective electromagnetic wave absorbing (reflection loss less than -10 dB) in the whole X-band (8-12.4 GHz) in a relatively large thickness range (3.9-4.7 mm). The densities of the proposed aerogel are no more than 0.02 g/cm3, demonstrating great potential for excellent lightweight microwave absorbing materials. The multiscale electromagnetic wave absorption mechanism is summarized, which would provide an important reference for designing ultra-lightweight absorbing materials with perfect absorption in wideband.
RESUMEN
BACKGROUND: Therapeutic approaches that combine conventional photodynamic therapy (PDT) with gas therapy (GT) to sensitize PDT are an attractive strategy, but the molecular structure design of the complex lacks effective guiding strategies. RESULTS: Herein, we have developed a nanoplatforms Cy-NMNO@SiO2 based on mesoporous silica materials loaded NIR-activatable small-molecule fluorescent probe Cy-NMNO for the synergistic treatment of photodynamic therapy/gas therapy (PDT/GT) in antibacterial and skin cancer. The theoretical calculation results showed that the low dissociation of N-NO in Cy-NMNO enabled it to dissociate effectively under NIR light irradiation, which is conducive to produce Cy and NO. Cy showed better 1O2 generation performance than Cy-NMNO. The cytotoxicity of Cy-NMNO obtained via the synergistic effect of GT and PDT synergistically enhances the effect of photodynamic therapy, thus achieving more effective tumor treatment and sterilization than conventional PDT. Moreover, the nanoplatforms Cy-NMNO@SiO2 realized efficient drug loading and drug delivery. CONCLUSIONS: This work not only offers a promising approach for PDT-GT synergistic drug delivery system, but also provides a valuable reference for the design of its drug molecules.
Asunto(s)
Nanopartículas , Óxido Nítrico , Fotoquimioterapia , Fármacos Fotosensibilizantes , Dióxido de Silicio , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Nanopartículas/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Humanos , Dióxido de Silicio/química , Animales , Ratones , Línea Celular Tumoral , Rayos Infrarrojos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Cutáneas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Ratones Endogámicos BALB CRESUMEN
Lithium-sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on graphene oxide (GO) through PANI modification, resulting in an increased interlayer spacing of MoS2. This expanded spacing exposed more active sites, enhancing polysulfide adsorption and catalytic conversion. The composite was used to prepare MoS2-NG/PP separators for Li-S batteries, which achieved a high specific capacity of 714 mAh g-1 at a 3 C rate and maintained a low capacity decay rate of 0.085% per cycle after 500 cycles at 0.5 C. The larger MoS2 interlayer spacing was key to improving redox reaction kinetics and suppressing the shuttle effect, making the MoS2-NG composite a promising material for enhancing the performance and stability of Li-S batteries.
RESUMEN
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis). However, the resistance mechanism of Chinese cabbage against clubroot disease is still unclear. It is important to exploit the key genes that response to early infection of P. brassicae. In this study, it was found that zoospores were firstly invaded hair roots on the 8th day after inoculating with 1 × 107 spores/mL P. brassicae. Transcriptome analysis found that the early interaction between Chinese cabbage and P. brassicae caused the significant expression change of some defense genes, such as NBS-LRRs and pathogenesis-related genes, etc. The above results were verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Otherwise, peroxidase (POD) salicylic acid (SA) and jasmonic acid (JA) were also found to be important signal molecules in the resistance to clubroot disease in Chinese cabbage. This study provides important clues for understanding the resistance mechanism of Chinese cabbage against clubroot disease.
Asunto(s)
Brassica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plasmodiophorida , Plasmodiophorida/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Brassica/parasitología , Brassica/genética , Resistencia a la Enfermedad/genética , Transcriptoma , Ácido Salicílico/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Brassica rapa/parasitología , Brassica rapa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
This study investigated the impact of Glycyrrhiza polysaccharides (GPS) on the respiratory health of broilers. Specifically, 240 one-day-old male Arbor Acres (AA) broilers were randomly assigned to two groups: basal diet (CON) and GPS (supplemented with 150 mg/kg of Glycyrrhiza polysaccharides). When compared with the CON group, the GPS group significantly increased the broiler average daily gain, serum immunoglobulin A, immunoglobulin M, immunoglobulin G, antioxidant capacity, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and tracheal messenger RNA (mRNA) expression levels of SOD1, SOD2, and GSH-Px. The GPS group also had a reduced feed conversion ratio, reduced lung IL-1ß and IL-6 levels, and upregulated tracheal mRNA expression of Occludin, Claudin1, and Mucin-2. Additionally, the GPS group had alterations in lung microbial diversity and composition. Transcriptomic and metabolomic analyses revealed the activation of the T cell receptor (TCR) signaling pathway and linoleic acid metabolic pathway in the GPS group. Correlation analysis demonstrated significant associations between differential bacteria, genes, serum metabolites, and phenotypic indicators. In conclusion, Glycyrrhiza polysaccharide supplementation positively influenced the respiratory health of broilers by modulating the lung microbiota, activating the TCR signaling pathway, and affecting the linoleic acid metabolism pathway.
RESUMEN
INTRODUCTION: To assess the Type 2 Diabetes Mellitus (T2DM) patients in association with Chronic Microvascular Complications at Glucose Peak Time and the association among chronic microvascular complications in T2DM patients and the glucose peak period in the typical steamed bread meal test. METHODS: Overall 1095 T2DM patients were classified as three groups: (1) Group G1: glucose peak time ≤ 1 h (n = 84), Group G2: 1 h < glucose peak time ≤ 2 h (n = 648) and Group G3: glucose peak time > 2 h (n = 363). The clinical characteristics, insulin characteristics and glucose peak time and chronic microvascular complications markers of patients in each group was analyzed and compared. Statistical analyses were performed using SPSS 23.0, employing chi-square tests, Kruskal-Wallis tests, one-way ANOVA, and binary logistic regression analysis, with significance set at P < 0.05. RESULTS: Age, length of disease, glycated hemoglobin (HbA1c), urine albumin-creatinine ratio (UACR), and the number of patients with diabetic retinopathy (DR) increased (all P < 0.05) in those with postponed glucose peak time, while insulinogenic indexes, the AUC for C-p (AUCC-p), fasting, and 120-min C-peptide (C-p) decreased (all P < 0.05). Only age was connected to patients with diabetic kidney disease (DKD) independently in binary logistic regression analysis, although delayed glucose peak time was related to the presence of patients with DR. (all P < 0.05). CONCLUSION: Delayed glucose peak time contributed to DR. Attention should be paid to condition of chronic microvascular complications in T2DM patients with a postponed peak glucose timing.
Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Persona de Mediana Edad , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/diagnóstico , Angiopatías Diabéticas/sangre , Glucemia/análisis , Glucemia/metabolismo , Anciano , Periodo Posprandial/fisiología , Adulto , Retinopatía Diabética/epidemiología , Retinopatía Diabética/sangre , Retinopatía Diabética/etiología , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/diagnóstico , Enfermedad Crónica , Hemoglobina Glucada/análisis , Prueba de Tolerancia a la Glucosa , Factores de TiempoRESUMEN
Although organic matter (exudate) excreted by aquatic organisms is an important component of dissolved organic matter (DOM) in the natural environment, its potential effects on the bioaccumulation of nanoparticles (NPs) remain unclear. In the present study, we examined the effects of the exudates from the protozoan Tetrahymena thermophila on the bioaccumulation (including uptake and cell surface adsorption) of iron oxide (Fe2O3, polyacrylate coated) and silica (SiO2) NPs in T. thermophila. The exudates were mostly (93.6 %, in carbon) composed of < 1-kDa molecules (e.g., lipids). When the exudates were mixed with the NPs, significant adsorption occurred on SiO2 NPs but not on Fe2O3 NPs. Independent of their adsorption by the NPs, the exudates significantly inhibited the bioaccumulation of both SiO2 NPs and Fe2O3 NPs by T. thermophila. This inhibitory effect was shown to be mainly due to their inhibition of NP adsorption on the cell surface. By contrast, the exudates had negligible effects on the uptake of either NP type, most likely due to their low molecular weight. Since DOM in the aquatic environment is dominated by molecules < 1 kDa, the potential effects of low-molecular-weight DOM, such as exudates from aquatic organisms, on the bioaccumulation of NPs merits greater attention. ENVIRONMENTAL IMPLICATION: Nanoparticles (NPs) are hazardous materials widespread in the natural environment. Previous studies showed that dissolved organic matter (DOM) in aquatic environments determine the environmental behavior and ecological effects of NPs. Although organic matter (exudate) excreted by aquatic organisms is an important component of DOM, its potential effects on the bioaccumulation of NPs remain unclear. In the present study, we found that the exudates inhibited the cell-surface adsorption of NPs but had no effects on NP uptake, as different from the well-known effects of DOM on NP bioaccumulation. This finding merits attention during evaluations of the environmental risks of NPs.
RESUMEN
Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2)is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.
RESUMEN
The occurrence and risk of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), derived from the oxidation of the tire antidegradant 6PPD, has raised significant concern since it was found to cause acute mortality in coho salmon when exposed to urban runoff. Given the short half-life period and low solubility of 6PPD-Q, reliable in situ measurement techniques are required to accurately understand its occurrence and behaviour in aquatic environments. Here, using the diffusive gradients in thin-films (DGT) method with HLB as a binding agent, we developed a new methodology to measure 6PPD-Q in urban waters. 6PPD-Q was rapidly and strongly adsorbed on the HLB-binding gel and was efficiently extracted using organic solvents. The HLB-DGT accumulated 6PPD-Q linearly for >7 d and its performance was not significantly affected by pH (6.5-8.5), ionic strength (0.0001-0.5 M) or dissolved organic matter (0-20 mg L-1). Field evaluation of the DGT method demonstrated its effectiveness in urban runoff, detecting 6PPD-Q levels of 15.8-39.5 ng L-1 in rivers. In snowmelt, DGT detected 6PPD-Q levels of 210 ng L-1 which is two times higher than the value obtained by grab sampling. 6PPD-Q levels were much higher in snowmelt than those in rivers. This indicates that snowfall constitutes an important transport pathway for 6PPD-Q and that DGT effectively captured the fraction continuously released from dust particles in the snow samples. 6PPD-Q posed a substantial risk to migratory fish in urban waters, and its release from tire wear particles requires further investigation. This study is the first to develop a DGT-based method for 6PPD-Q determination in urban waters, and the method can ensure an accurate measurement of the release of 6PPD-Q to the environment, particularly in rainfall or snowmelt, important pathways for its entry into the aquatic environment.
RESUMEN
Cell-cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia's power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand-receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications.
Asunto(s)
Comunicación Celular , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Humanos , Comunicación Celular/genética , Perfilación de la Expresión Génica/métodos , AnimalesRESUMEN
Aminopeptidase N (APN/CD13) is a widely expressed transmembrane ectoenzyme that is crucial for maintaining normal physiological activities. It exhibits abnormal activity closely associated with hepatic fibrosis and nonalcoholic fatty liver disease (NAFLD). Therefore, there is a high demand for noninvasive detection of aminopeptidase N (APN) in the diagnosis and research of related diseases. Here, we developed a small molecule fluorescent probe, Hcy-APN, which is a fluorescent probe with high sensitivity and selectivity for the detection of APN. Furthermore, we synthesized the fluorescent nanoprobe Hcy-APN@MSN by self-assembling Hcy-APN and mesoporous silica nanoparticles in solution using a combination of molecular probe design and nanofunctionalization strategies. The detection limit of this probe was 1.5 ng/mL. Hcy-APN@MSN exhibits more stable spectral characteristics compared to Hcy-APN and is suitable for detecting APN activity in live cells and mice. Hcy-APN@MSN was utilized for in vivo and intracellular imaging of NAFLD and hepatic fibrosis at different stages, as well as for a systematic assessment of APN levels in the liver. The results confirm an elevation in the expression levels of APN in NAFLD and hepatic fibrosis models. Furthermore, we investigated the inhibitory effect of the APN inhibitor bestatin in nonalcoholic fatty liver and hepatic fibrosis disease models, confirming its regulatory effect on APN levels in cells and in vivo in both disease models. Therefore, this study may offer diagnostic possibilities for detecting NAFLD and hepatic fibrosis.
Asunto(s)
Antígenos CD13 , Colorantes Fluorescentes , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Antígenos CD13/metabolismo , Antígenos CD13/antagonistas & inhibidores , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Humanos , Nanopartículas/química , Ratones Endogámicos C57BL , Imagen Óptica , Masculino , Dióxido de Silicio/químicaRESUMEN
We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
Asunto(s)
Aprendizaje Profundo , Recurrencia Local de Neoplasia , Neoplasias Vesicales sin Invasión Muscular , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/epidemiología , Recurrencia Local de Neoplasia/patología , Neoplasias Vesicales sin Invasión Muscular/patología , Curva ROC , Medición de Riesgo/métodosRESUMEN
BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.
Asunto(s)
Inteligencia Artificial , Cirrosis Hepática , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Femenino , Masculino , Persona de Mediana Edad , Adulto , Hígado/patología , Microscopía de Fluorescencia por Excitación Multifotónica , Biopsia , Estilo de Vida , Hígado Graso/terapia , Hígado Graso/patologíaRESUMEN
BACKGROUND: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.
Asunto(s)
Antígenos de Superficie , Glutamato Carboxipeptidasa II , Radioisótopos de Yodo , Melatonina , Nanopartículas , Neoplasias de la Próstata , Masculino , Animales , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Humanos , Radioisótopos de Yodo/administración & dosificación , Melatonina/farmacología , Melatonina/administración & dosificación , Línea Celular Tumoral , Nanopartículas/química , Ratones , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Distribución Tisular , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacologíaRESUMEN
The mechanisms governing gene regulation in domestic Yuzhong pigeon breast muscle development remain largely elusive. Here, we conducted a comparative analysis using Iso-seq and RNA-seq data from domestic Yuzhong pigeons and European meat pigeons to uncover signaling pathways and genes involved in breast muscle development. The Iso-seq data from domestic Yuzhong pigeons yielded 131,377,075 subreads, resulting in 16,587 non-redundant high-quality full-length transcripts post-correction. Furthermore, utilizing pfam, CPC, PLEK, and CPAT, we predicted 5575, 4973, 2333, and 4336 lncRNAs, respectively. Notably, several genes potentially implicated in breast muscle development were identified, including tropomyosin beta chain, myosin regulatory light chain 2, and myosin binding protein C. KEGG enrichment analysis revealed critical signaling pathways in breast muscle development, spanning carbon metabolism, biosynthesis of amino acids, glycolysis/gluconeogenesis, estrogen signaling, PI3K-AKT signaling, protein processing in the endoplasmic reticulum, oxidative phosphorylation, pentose phosphate pathway, fructose and mannose metabolism, and tight junctions. These findings offer insights into the biological processes driving breast muscle development in domestic Yuzhong pigeon, contributing to our understanding of this complex phenomenon.
Asunto(s)
Columbidae , Desarrollo de Músculos , RNA-Seq , Animales , Columbidae/genética , Columbidae/crecimiento & desarrollo , Columbidae/metabolismo , Desarrollo de Músculos/genética , Transducción de Señal/genética , Análisis de Secuencia de ARN , ARN Largo no Codificante/genéticaRESUMEN
This article provides an in-depth review of computational methods for predicting transcriptional regulators (TRs) with query gene sets. Identification of TRs is of utmost importance in many biological applications, including but not limited to elucidating biological development mechanisms, identifying key disease genes, and predicting therapeutic targets. Various computational methods based on next-generation sequencing (NGS) data have been developed in the past decade, yet no systematic evaluation of NGS-based methods has been offered. We classified these methods into two categories based on shared characteristics, namely library-based and region-based methods. We further conducted benchmark studies to evaluate the accuracy, sensitivity, coverage, and usability of NGS-based methods with molecular experimental datasets. Results show that BART, ChIP-Atlas, and Lisa have relatively better performance. Besides, we point out the limitations of NGS-based methods and explore potential directions for further improvement.
Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión GénicaRESUMEN
With the advancement of RNA sequencing technology, there has been a drive to uncover and elucidate the pivotal role of A-to-I RNA editing events in tumorigenesis. However, A-to-I miRNA editing events have been clearly identified in bladder cancer, the molecular mechanisms underlying their role in bladder cancer remain unclear. In our investigation, we observed a notable under-expression of edited miR-154-p13-5p in bladder cancer (BC) tissues, in contrast to normal counterparts. Remarkably, heightened expression levels of edited miR-154-p13-5p correlated with improved survival outcomes. To assess the impact of modified miR-154-p13-5p, we conducted a string of cell phenotype assays through transfection of the corresponding miRNAs or siRNAs. The results unequivocally demonstrate that edited miR-154-p13-5p exerts a substantial inhibitory influence on proliferation, migration, and induces apoptosis by specifically targeting LIX1L in bladder cancer. Moreover, we observed that the editing of miR-154-p13-5p or LIX1L-siRNAs inhibits the expression of LIX1L, thereby suppressing EMT-related proteins and cell cycle protein CDK2. Simultaneously, an upregulation in the expression levels of Caspase-3 and Cleaved Caspase-3 were also detected. Our research findings suggest that the upregulation of edited miR-154-p13-5p could potentially enhance the prognosis of bladder cancer, thereby presenting molecular biology-based therapeutic strategies.
RESUMEN
Transcriptional regulators (TRs) are master controllers of gene expression and play a critical role in both normal tissue development and disease progression. However, existing computational methods for identification of TRs regulating specific biological processes have significant limitations, such as relying on distance on a linear chromosome or binding motifs that have low specificity. Many also use statistical tests in ways that lack interpretability and rigorous confidence measures. We introduce BIT, a novel Bayesian hierarchical model for in-silico TR identification. Leveraging a comprehensive library of TR ChIP-seq data, BIT offers a fully integrated Bayesian approach to assess genome-wide consistency between user-provided epigenomic profiling data and the TR binding library, enabling the identification of critical TRs while quantifying uncertainty. It avoids estimation and inference in a sequential manner or numerous isolated statistical tests, thereby enhancing accuracy and interpretability. BIT successfully identified critical TRs in perturbation experiments, functionally essential TRs in various cancer types, and cell-type-specific TRs within heterogeneous cell populations, offering deeper biological insights into transcriptional regulation.
RESUMEN
Toxoplasma gondii is an opportunistic and pathogenic obligate intracellular parasitic protozoan that is widespread worldwide and can infect most warm-blooded animals, seriously endangering human health and affecting livestock production. Toxoplasmosis caused by T. gondii infection has different clinical manifestations, which are mainly determined by the virulence of T. gondii and host differences. Among the manifestations of this condition, abortion, stillbirth, and fetal malformation can occur if a woman is infected with T. gondii in early pregnancy. Here, we discuss how the T. gondii rhoptry protein affects host pregnancy outcomes and speculate on the related signaling pathways involved. The effects of rhoptry proteins of T. gondii on the placental barrier are complex. Rhoptry proteins not only regulate interferon-regulated genes (IRGs) to ensure the survival of parasites in activated cells but also promote the spread of worms in tissues and the invasive ability of the parasites. The functions of these rhoptry proteins and the associated signaling pathways highlight relevant mechanisms by which Toxoplasma crosses the placental barrier and influences fetal development and will guide future studies to uncover the complexity of the host-pathogen interactions.
Asunto(s)
Placenta , Proteínas Protozoarias , Transducción de Señal , Toxoplasma , Toxoplasmosis , Femenino , Placenta/parasitología , Embarazo , Toxoplasma/fisiología , Animales , Humanos , Toxoplasmosis/parasitología , Complicaciones Parasitarias del Embarazo/parasitologíaRESUMEN
OBJECTIVE: This study aims to analyze the risk factors for early postoperative brain injury in patients undergoing cardiovascular surgery and explore the predictive value of transcranial color Doppler (TCCD) and regional cerebral oxygen saturation (rSO2) for detecting early postoperative brain injury in cardiovascular surgery patients. METHODS: A total of 55 patients undergoing cardiovascular surgery with cardiopulmonary bypass in Changzhou No.2 The People's Hospital of Nanjing Medical University were included in this study. Neuron-specific enolase (NSE) concentration was measured 24 h after operation. Patients were divided into brain injury (NSE ≥ 16.3 ng/mL) and normal (0 < NSE < 16.3 ng/mL) groups according to the measured NSE concentration. The clinical outcomes between the two groups were compared, including decreased rSO2 and cerebral blood flow (as measured by TCCD) levels. The risk factors of early postoperative brain injury were analyzed by multivariate logistic regression analysis, and the significant variables were analyzed by receiver operating characteristic (ROC) analysis. RESULTS: A total of 50 patients were included in this study, with 20 patients in the brain injury group and 30 patients in the normal group. Cardiopulmonary bypass time (min) (107 ± 29 vs. 90 ± 28, P = 0.047) and aortic occlusion time (min) (111 (IQR 81-127) vs. 87 (IQR 72-116), P = 0.010) were significantly longer in the brain injury group than in the normal group. Patients in the brain injury group had greater decreased rSO2 (%) (27.0 ± 7.3 vs. 17.5 ± 6.1, P < 0.001) and cerebral blood flow (%) (44.9 (IQR 37.8-69.2) vs. 29.1 (IQR 12.0-48.2), P = 0.004) levels. Multivariate logistic regression analysis suggested that decreased rSO2 and cerebral blood flow levels, aortic occlusion time, and history of atrial fibrillation were independent risk factors for early postoperative brain injury (P < 0.05). ROC analysis reported that the best cutoff values for predicting early postoperative brain injury were 21.4% and 37.4% for decreased rSO2 and cerebral blood flow levels, respectively (P < 0.05). CONCLUSION: The decreased rSO2 and cerebral blood flow levels, aorta occlusion time, and history of atrial fibrillation were independent risk factors for early postoperative brain injury. TCCD and rSO2 could effectively monitor brain metabolism and cerebral blood flow and predict early postoperative brain injury.