RESUMEN
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Conducta Animal , Ciclofosfamida/toxicidad , Neurotransmisores/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismoRESUMEN
Understanding cadmium (Cd) extractability and transfer in soil-plant system is crucial for the evaluation of the remediation effect of Cd-contaminated soils. However, knowledge on the effects of different phosphorus (P) fertilizers on Cd uptake in plants, root morphology, and Cd extractability in rhizosphere soils remains very limited. In this study, a five-year field experiment was conducted to evaluate the impacts of four P fertilizers (i.e. calcium superphosphate, calcium magnesium phosphate, monopotassium phosphate, and compound fertilizer) on Cd uptake in maize (Zea mays L.), root morphology, and Cd extractability in rhizospheric acidic soils contaminated with Cd. The results showed that compared to the control, the contents of rhizospheric DTPA-Cd were respectively 18-40% and 8-29% lowered by the calcium magnesium phosphate and monopotassium phosphate, but 21-59% and 10-36% elevated by the calcium superphosphate and compound fertilizer. Similar effects of P fertilizers were observed on exchangeable Cd. Furthermore, the altered levels of the DTPA-Cd and exchangeable Cd in the rhizospheric soils were greater than those in the non-rhizospheric soils. Moreover, different P fertilization regimes altered the contents of Cd in maize tissues (roots, stems, leaves, and grains), and the alterations were closely related to the variation of DTPA-Cd and exchangeable Cd in the rhizospheric soils. Meanwhile, different P fertilization regimes enhanced root morphological parameters (root length, surface area, and volume), and the activities of urease and surcase. In general, the lowest concentrations of soil DTPA-Cd and Cd in maize tissues were found in the treatments with calcium magnesium phosphate. This study has demonstrated that the calcium magnesium phosphate can be used as a potential amendment agent for the acidic Cd-contaminated soils cultivated with maize.
Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Fertilización , Fertilizantes/análisis , Ácido Pentético , Fosfatos , Fósforo/farmacología , Raíces de Plantas , Suelo , Contaminantes del Suelo/análisis , Zea maysRESUMEN
A highly efficient Ru(II)-catalyzed regio- and stereospecific hydro-oxycarbonylation of unsymmetrical internal alkynes bearing a difunctional 2-pyridyloxy directing group with carboxylic acids has been developed, which provides allylic (Z)-enol esters in good to excellent yields with a broad substrate scope under mild conditions. The difunctional directing group can be diversely derivatized, particularly undergoing allylic substitution with various nucleophiles to afford ß-functionalized (Z)-enol esters without directing groups.
RESUMEN
A highly efficient cascade cyclization of phenidones and enynones has been developed via a Ru(II)-catalyzed C-H activation initiated indole formation/Diels-Alder reaction/iminium ion cyclization sequence, which afforded hexacyclic indolines as single diastereomer in good to excellent yields with a broad substrate scope under mild conditions. The reaction features the simultaneous generation of five new chemical bonds and four new rings in one pot, providing a rapid and concise approach toward polycyclic indoline alkaloids and their analogues.
RESUMEN
A rhodium-catalyzed diastereoselective formal [5 + 2] annulation of indoles with cyclohexadienone-containing 1,6-enynes has been established via indole 2,3-difunctionalization. The reaction, probably proceeding through tandem indole C2-H alkenylation and intramolecular Friedel-Crafts alkylation relay, provides rapid construction of indole-fused oxepines in good to excellent yields with a broad substrate scope. This method also features concomitant construction of cis-hydrobenzo[b] oxepine scaffolds, a core unit found in numerous natural products of important biological activities.
RESUMEN
An efficient Cp*RhIII-catalyzed formal C(sp3)-H activation/spiroannulation of alkylidene Meldrum's acids with alkynes has been developed using catalytical Cu(OAc)2 and air as the oxidant. This reaction demonstrates a new and straightforward approach to spirocyclopentadienes with Meldrum's acid moieties in good to excellent yields under mild reaction conditions with a broad substrate scope. Notably, this protocol provides a novel and straightforward approach to cyclopentadienes with various substitution patterns and the corresponding cyclopentadienyl-type ligands from simple substrates.
RESUMEN
We report a phosphine-catalyzed ring opening of electron-deficient alkylidenecyclopropanes (ACPs) to generate allylic phosphonium zwitterions that resemble the well-studied phosphine-allene adducts but exhibit distinct properties. The potent reactivity of these intermediates has been demonstrated in three types of substrate-controlled phosphine-catalyzed rearrangements of alkylidenecyclopropylketones, which chemoselectively afford tri- and tetrasubstituted furans, and trisubstituted dienones in good yields.
RESUMEN
Alkynylcyclopropanes have been used for the first time as coupling partners in transition-metal-catalyzed C-H functionalization. Specifically, a Cp*RhIII-catalyzed regioselective annulation of alkynylcyclopropanes with N-aryloxyamides via redox-neutral C-H/C-C activation has been developed, which affords highly functionalized 2,3-dihydrobenzofurans bearing an ( E)-exocyclic carbon-carbon double bond and a tetra-substituted carbon center in moderate to good yields with a broad substrate scope.
RESUMEN
Soil phosphorus (P) availability directly determines cropland productivity. Based on the long-term fertilization experiments in different climatic zones of China, this paper summarized the P content, its availability, and the factors affecting the P transformation in China cropland soils. The total and available P contents in different types of China cropland soils were 0.31-1.72 g x kg(-1) and 0.1-228.8 mg x kg(-1), respectively. Soil parent material, soil physical and chemical prosperities, and fertilization practices were the main factors affecting the soil P availability. It was suggested that more attentions should be paid on the mixed application of organic manure and chemical fertilizers to improve the P availability of cropland soils and on the potential environmental impacts of this fertilization.