Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174540, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977089

RESUMEN

OBJECTIVE: The cardiovascular system effects of environmental low-dose radiation exposure on radiation practitioners remain uncertain and require further investigation. The aim of this study was to initially investigate and explore the mechanisms by which low-dose radiation may contribute to atherosclerosis through a multi-omics joint comprehensive basic experiment. METHODS: We used WGCNA and differential analyses to identify shared genes and potential pathways between radiation injury and atherosclerosis sequencing datasets, as well as tissue transcriptome immune infiltration level extrapolation and single-cell transcriptome data correction using the CIBERSORT deconvolution algorithm. Animal models were constructed by combining a high-fat diet with 5 Gy γ-ray whole-body low-dose ionizing radiation. The detection of NETs release was validated by enzyme-linked immunosorbent assay. RESULTS: Analysis reveals shared genes in both datasets of post-irradiation and atherosclerosis, suggesting that immune system neutrophils may be a key node connecting radiation to atherosclerosis. NETs released by neutrophil death can influence the development of atherosclerosis. Animal experiments showed that the number of neutrophils decreased (P < 0.05) and the concentration of NETs reduced after low-dose radiation compared with the control group, and the concentration of NETs significantly increased (P < 0.05) in the HF group. Endothelial plaques were significantly increased in the high-fat feed group and significantly decreased in the low-dose radiation group compared with the control group. CONCLUSIONS: Long-term low-dose ionizing radiation exposure stimulates neutrophils and inhibits their production of NETs, resulting in inhibition of atherosclerosis.

2.
J Agric Food Chem ; 72(21): 11837-11853, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743877

RESUMEN

Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic ß-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.


Asunto(s)
Camellia sinensis , Hipoglucemiantes , Extractos Vegetales , , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Té/química , Camellia sinensis/química , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo
3.
J Inflamm Res ; 17: 2459-2478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681070

RESUMEN

Introduction: Sepsis is a worldwide epidemic, with high morbidity and mortality. Cuproptosis is a form of cell death that is associated with a wide range of diseases. This study aimed to explore genes associated with cuproptosis in sepsis, construct predictive models and screen for potential targets. Methods: The LASSO algorithm and SVM-RFE model has been analysed the expression of cuproptosis-related genes in sepsis and immune infiltration characteristics and identified the marker genes under a diagnostic model. Gene-drug networks, mRNA-miRNA networks and PPI networks were constructed to screen for potential biological targets. The expression of marker genes was validated based on the GSE57065 dataset. Consensus clustering method was used to classify sepsis samples. Results: We found 381 genes associated with the development of sepsis and discovered significantly differentially expressed cuproptosis-related genes of 16 cell types in sepsis and immune infiltration with CD8/CD4 T cells being lower. NFE2L2, NLRP3, SLC31A1, DLD, DLAT, PDHB, MTF1, CDKN2A and DLST were identified as marker genes by the LASSO algorithm and the SVM-RFE model. AUC > 0.9 was constructed for PDHB and MTF1 alone respectively. The validation group data for PDHB (P=0.00099) and MTF1 (P=7.2e-14) were statistically significant. Consistent clustering analysis confirmed two subtypes. The C1 subtype may be more relevant to cellular metabolism and the C2 subtype has some relevance to immune molecules.The results of animal experiments showed that the gene expression was consistent with the bioinformatics analysis. Discussion: Our study systematically explored the relationship between sepsis and cuproptosis and constructed a diagnostic model. And, several cuproptosis-related genes may interfere with the progression of sepsis through immune cell infiltration.

4.
Foods ; 12(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38002163

RESUMEN

The research on the activity of selenium (Se)-enriched agricultural products is receiving increasing attention since Se was recognized for its antioxidant activities and for its enhancement of immunity in trace elements. In this study, antioxidant Se-containing peptides, namely, Se-TAPepI-1 and Se-TAPepI-2, were optimally separated and prepared from Se-enriched tea protein hydrolysates by ultrafiltration and Sephadex G-25 purification, and subsequently, their physicochemical properties, oligopeptide sequence, and potential antioxidant mechanism were analyzed. Through the optimization of enzymatic hydrolysis conditions, the Se-enriched tea protein hydrolyzed by papain exhibited a better free radical scavenging activity. After separation and purification of hydrolysates, the two peptide fractions obtained showed significant differences in selenium content, amino acid composition, apparent morphology, peptide sequence, and free radical scavenging activity. Therein, two peptides from Se-TAPepI-1 included LPMFG (563.27 Da) and YPQSFIR (909.47 Da), and three peptides from Se-TAPepI-2 included GVNVPYK (775.42 Da), KGGPGG (552.24 Da), and GDEPPIVK (853.45 Da). Se-TAPepI-1 and Se-TAPepI-2 could ameliorate the cell peroxidation damage and inflammation by regulating NRF2/ARE pathway expression. Comparably, Se-TAPepI-1 showed a better regulatory effect than Se-TAPepI-2 due to their higher Se content, typical amino acid composition and sequence, higher surface roughness, and a looser arrangement in their apparent morphology. These results expanded the functional activities of tea peptide and provided the theoretical basis for the development of Se-containing peptides from Se-enriched tea as a potential natural source of antioxidant dietary supplements.

5.
J Agric Food Chem ; 71(44): 16604-16617, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37876151

RESUMEN

The potential biological function of tea and its active components on colitis has attracted wide attention. In this study, different tea active ingredients including tea polyphenols (TPPs), tea polysaccharides (TPSs), theabrownin (TB), and theanine (TA) have been compared in the intervention of dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, TPP showed the greatest effect on colitis since it reduced 60.87% of disease activity index (DAI) compared to that of the DSS-induced colitis group, followed by the reduction of 39.13% of TPS and 28.26% of TB on DAI, whereas there was no obvious alleviative effect of TA on colitis. TPP, TPS, and TB could regulate the composition and abundance of gut microbiota to increase the content of short-chain fatty acids (SCFAs) and enhance intestinal barrier function. Further evidence was observed that TPP and TPS regulated the activation of Nrf2/ARE and the TLR4/MyD88/NF-κB P65 pathway to alleviate the colitis. Results of cell experiments demonstrated that TPP showed the greatest antiapoptosis and mitochondrial function protective capability among the tea ingredients via inhibiting the Cytc/Cleaved-caspase-3 signaling pathway. In summary, the superior anticolitis activity of TPP compared to TPS and TB is primarily attributed to its unique upregulation of the abundance of Akkermansia and its ability to regulate the mitochondrial function.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Defecación ,
6.
Anal Methods ; 15(43): 5823-5836, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37870766

RESUMEN

Heavy metal pollution has become a growing concern in industrial, agricultural, and manufacturing processes, posing a significant threat to human health. Among these heavy metals, arsenic (As) is highly toxic and shares similar chemical properties and environmental behavior with other heavy metals. As(III) is particularly toxic compared to other forms of arsenic. Therefore, it is essential to develop a real-time, rapid, and sensitive method for the determination of As(III). In this study, we employed a unique bifunctional chelator, 1-(4-isothiocyanobenzyl)-ethylenediamine N,N,N',N'-tetraacetic acid (ITCBE), to prepare a complete antigen. Through a series of tests including balb/c mouse immunization, cell fusion (mouse L2041 spleen cells with mouse myeloma cells SP2/0), and subcloning, we generated four monoclonal cell lines (1C1, 2C2, 3A9, and 4A11). These cell lines demonstrated high purity, high affinity, and IC50 values of less than 50 µg mL-1. Monoclonal antibody 4A11, which exhibited a strong Raman signal, was selected as the probe, and Au@Ag 200 was utilized as the surface-enhanced Raman scattering (SERS) substrate for the preliminary establishment of SERS immunochromatographic test strips. The sensitivity of the SERS immunochromatographic test strips, measured through Raman signal detection, showed a significant improvement compared to the SERS immunochromatographic test strips analyzed by colorimetry (LOD = 49.43 µg mL-1 and LDR = 5.32-81.31 µg mL-1). The SERS immunochromatographic test strips achieved a LOD of 7.62 µg mL-1 and an LDR of 12.66-71.84 µg mL-1. This study presents innovative methodologies for the rapid detection of As(III) using SERS immunochromatographic test strips.


Asunto(s)
Arsénico , Nanotubos , Animales , Ratones , Anticuerpos Monoclonales , Oro/química , Inmunoensayo/métodos , Plata/química
7.
ACS Appl Mater Interfaces ; 15(37): 44109-44118, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676637

RESUMEN

Organophosphorus pesticides (OPPs) are extensively used in agricultural production, and the contamination caused by their residues has raised significant concerns regarding potential threats to human health. Herein, a novel fluorescence nanoprobe based on an enzyme-mediated silver nanoparticle-modified metal organic framework (AgNPs@PCN-224) was successfully prepared for the rapid detection of OPPs. Initially, AgNPs@PCN-224 were synthesized by reducing silver nitrate (AgNO3) using sodium borohydride (NaBH4) embedded into luminescent PCN-224. This triggered the inner filter effect, leading to fluorescence quenching. Meanwhile, under the catalysis of acetylcholinesterase (AChE) and choline oxidase (CHO), acetylcholine (ATCh) was decomposed to hydrogen peroxide (H2O2), which could destroy AgNPs to form Ag+ released from PCN-224 for fluorescence recovery. Instead, fenitrothion, an OPP, inhibited AChE activity, allowing the quenched fluorescence to be reactivated. Under the current optimum conditions, the fluorescence intensity had a good correlation (Y = -728.5370X + 2178.4248, R2 = 0.9869) over a dynamic range of fenitrothion concentrations from 0.1 to 500 ng/mL, with an LOD of 0.037 ng/mL. In addition, the anti-interference ability and robustness of the proposed sensor was verified for the monitoring of fenitrothion in tea with recoveries of 87.67-103.72% and the relative standard deviations (RSD) < 5.43%, indicating that the system has excellent prospects for OPP determination in practical applications. Furthermore, this work provides a universal platform for screening other enzyme inhibitors to detect OPPs.


Asunto(s)
Nanopartículas del Metal , Plaguicidas , Humanos , Fluorescencia , Acetilcolinesterasa , Fenitrotión , Peróxido de Hidrógeno , Compuestos Organofosforados , Plata
8.
Biosensors (Basel) ; 13(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37622852

RESUMEN

In order to improve the detection performance of surface-enhanced Raman scattering (SERS), a low-cost Au@Ag nanorods (Au@Ag NRs) substrate with a good SERS enhancement effect was developed and applied to the detection of malachite green (MG) in aquaculture water and crayfish. By comparing the SERS signal enhancement effect of five kinds of Au@Ag NRs substrates with different silver layer thickness on 4-mercaptobenzoic acid (4-MBA) solution, it was found that the substrate prepared with 100 µL AgNO3 had the smallest aspect ratio (3.27) and the thickest Ag layer (4.1 nm). However, it showed a good signal enhancement effect, and achieved a detection of 4-MBA as low as 1 × 10-11 M, which was 8.7 times higher than that of the AuNRs substrate. In addition, the Au@Ag NRs substrate developed in this study was used for SRES detection of MG in crayfish; its detection limit was 1.58 × 10-9 M. The developed Au@Ag NRs sensor had the advantages of stable SERS signal, uniform size and low cost, which provided a new tool for SERS signal enhancement and highly sensitive SERS detection method development.


Asunto(s)
Nanotubos , Colorantes de Rosanilina , Acuicultura
9.
J Colloid Interface Sci ; 651: 612-621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562303

RESUMEN

Programmable smart textiles with adaptive moisture/heat conditioning (MHC) capabilities are globally being sought to meet the requirements of comfort, energy efficiency, and health protection. However, a universal strategy for fabricating truly scalable and customizable MHC textiles is lacking. In this study, we introduce a scalable in situ grafting approach for the continuous fabrication of two series of smart textile yarns with opposite thermoresponsive wetting behaviors. In particular, the wetting transition temperature can be precisely programmed by adjusting the grafting formula, making the yarns highly customizable. The smart yarns demonstrated excellent mechanical strength, whiteness, weavability, biocompatibility, and washability (with more than 60 home washes), comparable to those of regular textile yarns. They can serve as building blocks independently or in combination to create smart textiles with adaptive sweat wicking and intelligent moisture/heat regulation capabilities. A proposed hybrid textile integrating both the two series of smart yarns can offer dry-contact and cooling/keep-warming effects of approximately 1.6/2.8 °C, respectively, in response to changes in ambient temperature. Our method provides a rich array of design options for nonpowered MHC textiles while maintaining a balance between traditional wearing conventions and large-scale production.

10.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493455

RESUMEN

Tea contains a variety of bioactive components, including catechins, amino acids, tea pigments, caffeine and tea polysaccharides, which exhibit multiple biological activities. These functional components in tea provide a variety of unique flavors, such as bitterness, astringency, sourness, sweetness and umami, which meet the demand of people for natural plant drinks with health benefits and pleasant flavor. Meanwhile, the traditional process of tea plantation, manufacturing and circulation are often accompanied by the safety problems of pesticide residue, heavy metal, organic solvents and other exogenous risks. High-quality tea extract refers to the special tea extract obtained by enriching the specific components of tea. Through green and efficient extraction technologies, diversed high-quality tea extracts such as high-fragrance and high-amino acid tea extracts, low-caffeine and high-catechin tea extracts, high-bioavailability and high-theaflavin tea extracts, high-antioxidant and high-tea polysaccharide tea extracts, high-umami-taste and low-bitter and astringent taste tea extracts are produced. Furthermore, rapid detection, green control and intelligent processing are applied to monitor the quality of tea in real-time, which guarantee the stability and safety of high-quality tea extracts with enhanced efficiency. These emerging technologies will realize the functionalization and specialization of high-quality tea extracts, and promote the sustainable development of tea industry.


Main high-quality tea extracts and their preparation methods were introduced.Potential pollutants in the processing of tea extracts and their detection methods were proposed.Emerging intelligent processing technologies of tea extract were summarized.The applications of high-quality tea extracts in food industry were explored.Future trends of tea extracts and relevant suggestions were presented.

11.
Compr Rev Food Sci Food Saf ; 22(4): 2945-2976, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37166996

RESUMEN

Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Té/química , Plaguicidas/análisis , Medición de Riesgo/métodos , Agua
12.
Food Funct ; 14(9): 4327-4338, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37083054

RESUMEN

A high-sugar and -fat diet (HSFD) has become a primary risk factor for diabetes, and dietary intervention shows a substantial effect on the prevention and management of hyperglycemia. In this study, the chemical compositions of the aqueous extracts of stir-fried green tea (GT) and congou black tea (BT) were compared. Moreover, their potential mechanisms and regulatory effects on hepatic glycolipid metabolism and gut microbiota disorders in hyperglycemic mice were further explored. Our results show that GT or BT intervention had a prominent regulatory effect on glycolipid metabolism. Moreover, they could significantly regulate the levels of serum metabolic signatures, the activities of key enzymes in liver glucose metabolism, and the expression of genes or proteins related to glycolipid metabolism via activating the IRS-1-PI3K/AKT-GLUT2 signaling pathway. Significantly, GT or BT administration adjusted the composition and diversity of the gut microbiota, mainly reflecting a significant increase in the abundance of beneficial bacteria (including Allobaculum, Lactobacillus, and Turicibacter) and reducing the abundance of harmful or conditionally pathogenic bacteria (mainly including Clostridiales and Bacteroides). Our results suggest that dietary supplementation with GT or BT could exert a practical anti-diabetic effect. Meanwhile, BT intervention showed a better regulation effect on glycolipid metabolism. This study reveals that GT and BT have excellent potential for developing anti-diabetic food.


Asunto(s)
Camellia sinensis , Microbioma Gastrointestinal , Ratones , Animales , Té/química , Ratones Obesos , Fosfatidilinositol 3-Quinasas , Camellia sinensis/química , Dieta Alta en Grasa/efectos adversos , Glucolípidos/farmacología , Ratones Endogámicos C57BL
13.
Int J Biol Macromol ; 240: 124495, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076078

RESUMEN

Cotton fabrics (CFs) with persistent and rapid bactericidal capability would be of great significance for daily health protection because CFs are very suitable for the growth and reproduction of microorganisms. Herein, we developed a reactive N-halamine compound, 3-(3-hydroxypropyl diisocyanate)-5,5-dimethylhydantoin (IPDMH), that can be covalently bound to a CF to generate a bactericidal CF after chlorination (CF-DMF-Cl) without damaging its surface morphology. The antibacterial rates of CF-DMF-Cl (0.5 wt% IPDMH) against the gram-negative bacterium Escherichia coli (E. coli) and gram-positive bacterium Staphylococcus aureus (S. aureus) reached 99.99 % and were maintained at 90 % (against E. coli) and 93.5 % (against S. aureus) after 50 laundering cycles. The combination of contact killing and release killing mechanisms by CF-PDM-Cl leads to its rapid and persistent bactericidal activity. In addition, CF-DMF-Cl exhibits adequate biocompatibility, well-maintained mechanical properties, air/water vapor permeability and whiteness. Therefore, the proposed CF-DMF-Cl has great potential applications as a bactericidal CF for use in medical textiles, sportswear, home dressings, and so on.


Asunto(s)
Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Aminas , Textiles/microbiología , Fibra de Algodón
14.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900607

RESUMEN

Fenvalerate has the advantages of a broad insecticidal spectrum, high efficiency, low toxicity and low cost, and it is widely used in agriculture, especially in tea, resulting in the accumulation of fenvalerate residues in tea and the environment, posing a serious threat to human health. Therefore, the timely monitoring of fenvalerate residue dynamics is vital for ensuring the health of humans and the ecological environment, and it is necessary for establishing a fast, reliable, accurate and on-site method for detecting fenvalerate residues. Based on the methods of immunology, biochemistry and molecular biology, mammalian spleen cells, myeloma cells and mice were used as experimental materials to establish a rapid detection method of an enzyme-linked immunosorbent assay to detect the residues of fenvalerate in dark tea. Three cell lines-1B6, 2A11 and 5G2-that can stably secrete fenvalerate antibodies were obtained by McAb technology, and their sensitivities (IC50) were 36.6 ng/mL, 24.3 ng/mL and 21.7 ng/mL, respectively. The cross-reaction rates of the pyrethroid structural analogs were all below 0.6%. Six dark teas were used to detect the practical application of fenvalerate monoclonal antibodies. The sensitivity IC50 of the anti-fenvalerate McAb in PBS with 30% methanol is 29.12 ng/mL. Furthermore, a latex microsphere immunochromatographic test strip with an LOD of 10.0 ng/mL and an LDR of 18.9-357 ng/mL was preliminarily developed. A specific and sensitive monoclonal antibody for fenvalerate was successfully prepared and applied to detect fenvalerate in dark teas (Pu'er tea, Liupao tea, Fu Brick tea, Qingzhuan tea, Enshi dark tea and selenium-enriched Enshi dark tea). A latex microsphere immunochromatographic test strip was developed for the preparation of rapid detection test strips of fenvalerate.

15.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831670

RESUMEN

Breast cancer is the most diagnosed cancer in women in the world. Mebendazole (MBZ) has been demonstrated to have preclinical efficacy across multiple cancers, including glioblastoma multiforme, medulloblastoma, colon, breast, pancreatic, and thyroid cancers. MBZ was also well tolerated in a recent phase I clinical trial of adults diagnosed with glioma. The mechanisms of action reported so far for MBZ include tubulin disruption, inhibiting angiogenesis, promoting apoptosis, and maintaining stemness. To elucidate additional mechanisms of action for mebendazole (MBZ), we performed RNA sequencing of three different breast cancer cell lines treated with either MBZ or vehicle control. We compared the top genes downregulated upon MBZ treatment with expression profiles of cells treated with over 15,000 perturbagens using the clue.io online analysis tool. In addition to tubulin inhibitors, the gene expression profile that correlated most with MBZ treatment matched the profile of cells treated with known hypoxia-inducible factor (HIF-1α and -2α) inhibitors. The HIF pathway is the main driver of the cellular response to hypoxia, which occurs in solid tumors. Preclinical data support using HIF inhibitors in combination with standard of care to treat solid tumors. Therefore, we tested the hypothesis that MBZ could inhibit the hypoxia response. Using RNA sequencing and HIF-reporter assays, we demonstrate that MBZ inhibits the transcriptional activity of HIFs in breast cancer cell lines and in mouse models of breast cancer by preventing the induction of HIF-1α, HIF-2α, and HIF-1ß protein under hypoxia. Taken together, our results suggest that MBZ treatment has additional therapeutic efficacy in the setting of hypoxia and warrants further consideration as a cancer therapy.

16.
Plant Foods Hum Nutr ; 78(1): 61-67, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36308615

RESUMEN

Black tea is one of the six major tea categories and has a variety of bioactivities. However, little is known about its comprehensive evaluation of hypoglycemic effects and potential mechanisms. In this study, we investigated the in vivo hypoglycemic activity and potential mechanism for aqueous extracts of ordinary black tea (BT) and selenium-enriched black tea (Se-BT) by using an established high-fat diet together with streptozotocin (STZ)-induced hyperglycemic mouse model. Additionally, we also explored their α-glucosidase inhibition activity. The results show that both BT and Se-BT had a favorable glycosidase inhibitory activity. Moreover, the intervention of BT and Se-BT could regulate the mRNA expression and the level of serum parameters related to glucose and lipid metabolisms. Accordingly, they could activate the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling pathway and alleviate insulin resistance (IR) and hyperglycemia. Moreover, supplementation of BT and Se-BT increased the richness and diversity of intestinal flora and altered the abundance of beneficial and harmful bacteria. Both BT and Se-BT could regulate glucose metabolism, alleviate tissue damage, and restore intestinal flora dysbiosis, suggesting that they could be used as a natural functional food for preventing hyperglycemia.


Asunto(s)
Camellia sinensis , Microbioma Gastrointestinal , Hiperglucemia , Selenio , Animales , Ratones , Glucosa , , Ratones Obesos , Glucemia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hipoglucemiantes/farmacología , Camellia sinensis/metabolismo , Lípidos
17.
Crit Rev Food Sci Nutr ; 63(25): 7598-7626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35266837

RESUMEN

Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Sueño-Vigilia , Humanos , , Sueño , Polifenoles/farmacología , Sistema Inmunológico
18.
Front Endocrinol (Lausanne) ; 13: 1074516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465626

RESUMEN

Background: Acupuncture is a widely practiced, convenient, and safe treatment modality within complementary and integrative medicine. Increasing studies have revealed the efficacy of acupuncture for the treatment of osteoporosis in both human and non-human subjects. The aim of the present study was to assess the improvement of osteoporosis after overall adjustment acupuncture (OA) as well as its endocrine-modulating effect in an ovariectomized rat model. Methods: In total, 32 female Sprague-Dawley (SD) rats were randomly divided into the sham, model, ovariectomy+estrogen (OVX+E), and OVX+OA (OVX+A) groups with eight rats in each group. The postmenopausal osteoporosis (PMOP) rat model was induced by bilateral ovariectomy. At 12 weeks after surgery, rats in the OVX+E group received estradiol (0.2 mg/kg/i.g./qod) for 12 weeks, and rats in the OVX+A group were treated with acupuncture at Zusanli (ST36), Shenshu (BL23), and Dazhu (BL11) points (qod) for 12 weeks. At the end of the treatment, all rats were sacrificed, and the body weight, uterus index, bone mineral density (BMD), bone mineral content (BMC), bone trabeculae structural parameters, femoral biomechanical properties, femoral histomorphology, and several hormone levels were examined. Results: In OVX rats, OA abrogated the body weight gain and improved osteoporosis in terms of BMD, BMC, bone trabeculae structural parameters, bone strength, and bone tissue histomorphology. Moreover, OA modulated the serum levels of estradiol, corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT). Conclusions: OA improves osteoporosis and exerts an endocrine-modulating effect in ovariectomized rats.


Asunto(s)
Terapia por Acupuntura , Osteoporosis , Femenino , Ratas , Animales , Humanos , Ratas Sprague-Dawley , Osteoporosis/terapia , Estradiol , Estrógenos , Peso Corporal
19.
Nanomaterials (Basel) ; 12(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500872

RESUMEN

The development of stimuli-responsive controlled release formulations is a potential method of improving pesticide utilization efficiency and alleviating current pesticide-related environmental pollution. In this study, a self-destruction redox-responsive pesticide delivery system using biodegradable disulfide-bond-bridged mesoporous organosilica (DMON) nanoparticles as the porous carriers and coordination complexes of gallic acid (GA) and Fe(III) ions as the capping agents were established for controlling prochloraz (PRO) release. The GA-Fe(III) complexes deposited onto the surface of DMON nanoparticles could effectively improve the light stability of prochloraz. Due to the decomposition of GA-Fe(III) complexes, the nano-vehicles had excellent redox-responsive performance under the reducing environments generated by the fungus. The spreadability of PRO@DMON-GA-Fe(III) nanoparticles on the rice leaves was increased due to the hydrogen bonds between GA and rice leaves. Compared with prochloraz emulsifiable concentrate, PRO@DMON-GA-Fe(III) nanoparticles showed better fungicidal activity against Magnaporthe oryzae with a longer duration under the same concentration of prochloraz. More importantly, DMON-GA-Fe(III) nanocarriers did not observe obvious toxicity to the growth of rice seedlings. Considering non-toxic organic solvents and excellent antifungal activity, redox-responsive pesticide controlled release systems with self-destruction properties have great application prospects in the field of plant disease management.

20.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296812

RESUMEN

Multimodal antimicrobial technology is regarded as a promising strategy for controlling plant diseases because it enhances antimicrobial efficacy by blocking multiple pesticide-resistance pathways. In this work, a pH-responsive multimodal antimicrobial system was constructed based on ZIF-90 for the controlled release of kasugamycin (KSM). A series of physicochemical characterizations confirmed the successful fabrication of ZIF-90-KSM. The results indicated that the loading capacity of ZIF-90-KSM for KSM was approximately 6.7% and that the ZIF-90 nanocarriers could protect KSM against photodegradation effectively. The acid pH at the site of disease not only decompose the Schiff base bonds between KSM and ZIF-90, but also completely dissolved the nanocarriers. The simultaneous release of KSM and Zn2+ ions was able to achieve multimodal antimicrobial functions during disease occurs. A bioactivity survey indicated that ZIF-90-KSM had superior fungicidal activity and longer duration against Magnaporthe oryzae than KSM aqueous solution. In addition, the phytotoxicity assessment of ZIF-90-KSM on rice plants did not reveal any adverse effects. Therefore, ZIF-90-KSM prepared by Schiff base reaction has great potential for achieving synergistic antifungal functions and provides an eco-friendly approach to manage rice diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA