Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 263: 122161, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39084092

RESUMEN

Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.

2.
J Environ Manage ; 356: 120615, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518499

RESUMEN

Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.


Asunto(s)
Disolventes Eutécticos Profundos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Colina/química , Metano , Urea/química , Reactores Biológicos
3.
Bioresour Technol ; 397: 130491, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408502

RESUMEN

This study introduced two deep eutectic solvents, ChCl/oxalic acid (CO) and ChCl/ethylene glycol (CE), into a 34-day co-composting process of distillery sludge and distiller's grains waste to address challenges related to NH3 emissions. The addition of DES increased dissolved organic carbon by 68% to 92%, offering more utilizable carbon for microorganisms. SYTO9/PI staining and enzyme activity tests showed the CE group had higher bacterial activity and metabolic levels during the thermophilic phase than the control. Bacterial community analysis revealed that early dominance of Lactobacillus and Lysinibacillus in CE accelerated the onset of the thermophilic phase, reduced pile pH, and significantly decreased urease production by reducing Ureibacillus. Consequently, CE treatment substantially dropped NH3 emissions by 73% and nitrogen loss by 54%. Besides, CE fostered a more abundant functional microbial community during the cooling and maturation phases, enhancing deep degradation and humification of organic matter.


Asunto(s)
Compostaje , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Amoníaco/metabolismo , Disolventes Eutécticos Profundos , Solventes , Carbono , Bacterias/metabolismo , Nitrógeno/metabolismo , Suelo
4.
J Hazard Mater ; 466: 133595, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290332

RESUMEN

In this study, an innovative approach utilizing betaine as a raw material was employed to effectively modify the surface of chitosan with quaternary ammonium groups. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) characterization showed that the quaternary ammonium groups on betaine were successfully loaded on the chitosan surface. The effects of dosage, pH, initial perchlorate concentration, temperature and co-existing anions on the removal efficiency of perchlorate were investigated. The saturated adsorption capacity of CGQS was 35.41 mg/g under natural condition. The impact of initial perchlorate concentrations and column flow rates on the column adsorption experiments were investigated, as well as natural water tests. Sterilizing performance experiments of CGQS were carried out innovatively. Under the condition of initial concentration of 0.5 mg/L, 9 BV/h (bed volume per hour), the effluent natural water was up to standard (≤0.07 mg/L) with a treatment capacity of 210 BV/g, and the sterilizing rate of CGQS was up to 97.02%. The proposed adsorption mechanisms involved surface pore adsorption, electrostatic adsorption of quaternary ammonium groups, and ion exchange between chloride and perchlorate ions. The CGQS prepared in this work had great potential for treating trace perchlorate contamination in natural water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA