Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Chem ; 12: 1412457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863675

RESUMEN

Water pollution caused by antibiotics is a growing problem and photodegradation by efficient catalysts is an environmentally friendly technology that can effectively degrade organic pollutants in water. Here, a novel method was innovatively used to synthesize niobium oxyfluoride (Nb3O7F) nanosheets decorated with Au nanoparticles, which is the first report for the composites of Au and Nb3O7F. We prepared the Nb3O7F nanosheets via hydrothermal synthesis followed by deposition of Au nanoparticles on their surface using HAuCl4. The prepared samples were characterized by XRD, HRTEM, XPS, and UV-Vis. The diameters of most Au NPs are ranging from 5 to 25 nm with an average size of about 16.9 nm, as well as the Nb3O7F nanosheets in size ranging from 200 nm to 700 nm. The chemical composition of the Au-Nb3O7F showed a Au/Nb atomic ratio of 1/10, as well as a Nb/O/F ratio of 3/7/1. UV-Vis spectrum reveals a largest absorption peak at 520 nm for the Au-Nb3O7F nanosheets. The prepared Au-Nb3O7F nanomaterials were applied to the visible-light photodegradation of tetracycline hydrochloride, with the photocatalytic degradation rate reached more than 50% under the optimal conditions within 1 h. Capture experiments indicated that h+ and •O2 - are the main active substances involved during the course of the photodegradation. Furthermore, the proposed mechanism for the photodegradation of the novel Au-Nb3O7F nanosheets was given.

2.
Sci Rep ; 14(1): 14747, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926508

RESUMEN

There are no targeted rehabilitation training modalities and assessment tools for patients after transoral endoscopic thyroidectomy vestibular approach (TOETVA). Herein, we develop a new assessment questionnaire and rehabilitation training modality and evaluate its safety and effectiveness. The THYCA-QoL-TOETVA questionnaire was compiled, and reliability and validity analyses were performed. Patients were divided into the new rehabilitation training group (N) or the conventional rehabilitation training group (C), and 1:1 propensity score matching (PSM) was performed after administering questionnaires to patients in both groups. Cervical range of motion (CROM) data were also measured and collected for statistical analysis. The questionnaire used in this study showed good expert authority, coordination, internal consistency, and questionnaire reliability. A total of 476 patients were included after PSM, and the questionnaire results showed that recovery and quality of life were better in the N group than in the C group (124.55 ± 8.171 vs. 122.94 ± 8.366, p = 0.026). Analysis of cervical spine mobility showed that rehabilitation was better in the N group compared to the C group at postoperative one month (flexion: 1.762°, extension: 4.720°, left lateral bending: 3.912°, right lateral bending: 4.061°, left axial rotation: 5.180°, right axial rotation: 5.199°, p value all of these < 0.001), and at postoperative three months (flexion: 2.866°, extension: 2.904°, left lateral bending: 3.927°, right lateral bending: 3.330°, left axial rotation: 4.395°, right axial rotation: 3.992°, p value all of these < 0.001). The THYCA-QoL-TOETVA provides an appropriate and effective tool for measuring the postoperative quality of life of TOETVA patients. This new rehabilitation training can effectively alleviate the problem of limited neck movement and improve the quality of life of patients after TOETVA surgery.Trial registration: ChiCTR2300069097.


Asunto(s)
Calidad de Vida , Tiroidectomía , Humanos , Tiroidectomía/métodos , Tiroidectomía/rehabilitación , Tiroidectomía/efectos adversos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Encuestas y Cuestionarios , Rango del Movimiento Articular , Periodo Posoperatorio , Cirugía Endoscópica por Orificios Naturales/métodos
3.
Infect Drug Resist ; 17: 2469-2484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915319

RESUMEN

Objective: This study explored the level of nuclear factor-ƙB (NF-ƙB) in the bronchoalveolar lavage fluid (BALF) of children with severe Mycoplasma Pneumoniae pneumonia (SMPP) and the correlation between NF-ƙB, cellular immunity, and clinical characteristics. Methods: A total of 41 hospitalized children diagnosed with SMPP were selected and included in the SMPP group, and 13 bronchial foreign bodies (FB) without infection during the same period were included in the FB group. The NF-ƙB in the BALF of participants was detected by enzyme-linked immunosorbent assay. The correlation between NF-ƙB and laboratory findings, cellular immunity, and the clinical features in children with SMPP was analyzed. The differences in chest imaging and bronchoscopy in children with SMPP were observed. Results: The levels of NF-ƙB were significantly increased in the SMPP group compared with the FB group (P < 0.001). There were correlations between different NF-ƙB pairs in the SMPP group (P < 0.01). Nuclear factor-ƙB (NF-ƙB) correlated with IL-6, the mycoplasma load in BALF, fever peak, length of hospital stay, and sputum suppository (P < 0.05). The higher the intracellular NF-ƙB level in BALF, the lower the CD3+ CD4+ value in peripheral blood (P < 0.05). Intracellular NF-ƙB and total NF-ƙB correlated with pleural effusion, pericardial effusion, and extrapulmonary complications (P < 0.05). Conclusion: NF-ƙB is involved in airway inflammation changes in children with SMPP. The higher the level of NF-ƙB in the airway, the more severe the clinical manifestations, and the longer the length of hospital stay is likely to be.

4.
Nat Commun ; 15(1): 5486, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942779

RESUMEN

Compounding functional nanoparticles with highly conductive and porous carbon scaffolds is a basic pathway for engineering many important functional devices. However, enabling uniform spatial distribution of functional particles within a massively conjugated, monolithic and mesoporous structure remains challenging, as the high processing temperature for graphitization can arouse nanoparticle ripening, agglomerations and compositional changes. Herein, we report a unique "popcorn-making-mimic" strategy for preparing a highly conjugated and uniformly compounded graphene@NiFe2O4 composite film through a laser-assisted instantaneous compounding method in ambient condition. It can successfully inhibit the unwanted structural disintegration and mass loss during the laser treatment by avoiding oxidation, bursting, and inhomogeneous heat accumulations, thus achieving a highly integrated composite structure with superior electrical conductivity and high saturated magnetization. Such a single-sided film exhibits an absolute shielding effectiveness of up to 20906 dB cm2 g-1 with 75% absorption rate, superior mechanical flexibility and excellent temperature/humidity aging reliability. These performance indexes signify a substantial advance in EMI absorption capability, fabrication universality, small form-factor and device reliability toward commercial applications. Our method provides a paradigm for fabricating sophisticated composite materials for versatile applications.

5.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918787

RESUMEN

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Asunto(s)
Cementos para Huesos , Péptido Relacionado con Gen de Calcitonina , Fosfatos de Calcio , Osteogénesis , Porcinos Enanos , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cementos para Huesos/farmacología , Cementos para Huesos/química , Ratones , Porcinos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Columna Vertebral/cirugía , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Línea Celular , Magnesio/farmacología , Magnesio/química
6.
Chem Soc Rev ; 53(12): 6600-6624, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38817197

RESUMEN

Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.

7.
ACS Appl Mater Interfaces ; 16(21): 27926-27935, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743936

RESUMEN

Physical unclonable functions (PUFs) utilize uncontrollable manufacturing randomness to yield cryptographic primitives. Currently, the fabrication of the most generally employed optical PUFs mainly depends on fluorescent, Raman, or plasmonic materials, which suffer inherent robustness issues. Herein, we construct an optical PUF with high environmental stability via total internal reflection (TIR-PUF) perturbed by randomly distributed polymer microspheres. The response image is transformed into encoded keys via an iterative binning procedure. The concentration of the polymer solution is optimized to debias the bit nonuniformity and maximize encoding capacity. The constructed TIR-PUF shows significantly high encoding capacity (2370) and markedly low total authentication error probability (1.614 × 10-23). The intra-Hamming distance is as low as 0.068, indicating the excellent readout reliability of TIR-PUF. The environmental stability of TIR-PUF has demonstrated promising results under a range of challenging conditions such as ultrasonic washing, high temperature, ultraviolet irradiation, and severe chemical environments. Moreover, the challenge-response pairs of our TIR-PUFs are demonstrated on an authentication system with low-power dissipation, lightweight components, and wireless imaging capture, rendering the possibility of portable authentication for practical applications.

8.
Toxicol Lett ; 397: 129-140, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759938

RESUMEN

Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.


Asunto(s)
Conducta Animal , Corteza Prefrontal , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratones , Conducta Animal/efectos de los fármacos , Masculino , Nanopartículas del Metal/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos
9.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690980

RESUMEN

We report on the development and performance evaluation of an ultra-stable laser for an 27Al+ optical clock. After a series of noise suppressions, especially the vibrational and temperature fluctuation noise, the 30 cm long cavity stabilized laser obtains a frequency instability of 1.3 × 10-16 @1 s. This result is predicted by noise summation and confirmed by the three-cornered hat method. The 27Al+ optical clock transition is also used to characterize the laser frequency noise, and consistent results are yielded. This is the first reported instance of using single ion optical clocks to measure the frequency noise of ultra-stable lasers, as far as we know. With the implementation of the ultra-stable clock laser, an ultra-narrow linewidth clock transition of 2.8 Hz is obtained.

10.
Microorganisms ; 12(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792779

RESUMEN

The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.

11.
Risk Manag Healthc Policy ; 17: 1375-1385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813068

RESUMEN

Background: Although affordable generics could probably contribute to the solution of rapidly increasing pharmaceutical expenditure, those drugs are prescribed at a lower rate in China. Physicians' perception and knowledge of generics have a great influence on their prescribing behavior. Objective: This study aimed to identify factors that affect physicians' generic prescribing behavior based on the theory of planned behaviors (TPB). Methods: Data were collected by both electronic and paper-based surveys from 1297 Chinese physicians, and 1047 surveys were retained. The structural equation model (SEM) was employed to investigate the relationship between four behavioral constructs, namely, attitudes, subjective norms, perceived control of behaviors, and intentions. Results: About 50% of Chinese physicians had a positive attitude towards generic drugs that had passed the "Consistency Evaluation of Quality and Efficacy of Generic Drugs" (high-quality generic drugs), but their knowledge of generic drugs was relatively inadequate. The path coefficients for the effect of attitudes, subjective norms, and perceived behavioral control on behavioral intention were 0.285, 0.366, and 0.322 respectively. The path coefficients for the effect of behavioral intention and perceived behavioral control on prescribing behavior were 0.009 and 0.410 respectively. Conclusion: Physicians' attitudes, subjective norms, and perceived behavioral control were significant positive correlation predictors of behavioral intention. Subjective norms and perceived behavior control had a greater impact than attitude on physicians' prescribing intention. However, the generic prescribing behavior is not under the volitional control of Chinese physicians. Physicians' prescribing practice is likely affected by perceived strong control over prescribing generic drugs.

12.
J Immunother Cancer ; 12(5)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816233

RESUMEN

BACKGROUND: The incidence of papillary thyroid cancer (PTC) continues to rise all over the world, 10-15% of the patients have a poor prognosis. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of PTC immune remodeling and exploration of novel treatment targets. METHODS: This study conducted a single-cell RNA sequencing (scRNA-seq) analysis using 18 surgical tissue specimens procured from 14 patients diagnosed with adjacent tissues, non-progressive PTC or progressive PTC. Key findings were authenticated through spatial transcriptomics RNA sequencing, immunohistochemistry, multiplex immunohistochemistry, and an independent bulk RNA-seq data set containing 502 samples. RESULTS: A total of 151,238 individual cells derived from 18 adjacent tissues, non-progressive PTC and progressive PTC specimens underwent scRNA-seq analysis. We found that progressive PTC exhibits the following characteristics: a significant decrease in overall immune cells, enhanced immune evasion of tumor cells, and disrupted antigen presentation function. Moreover, we identified a subpopulation of lysosomal associated membrane protein 3 (LAMP3+) dendritic cells (DCs) exhibiting heightened infiltration in progressive PTC and associated with advanced T stage and poor prognosis of PTC. LAMP3+ DCs promote CD8+ T cells exhaustion (mediated by NECTIN2-TIGIT) and increase infiltration abundance of regulatory T cells (mediated by chemokine (C-C motif) ligand 17 (CCL17)-chemokine (C-C motif) receptor 4 (CCR4)) establishing an immune-suppressive microenvironment. Ultimately, we unveiled that progressive PTC tumor cells facilitate the retention of LAMP3+ DCs within the tumor microenvironment through NECTIN3-NECTIN2 interactions, thereby rendering tumor cells more susceptible to immune evasion. CONCLUSION: Our findings expound valuable insights into the role of the interaction between LAMP3+ DCs and T-cell subpopulations and offer new and effective ideas and strategies for immunotherapy in patients with progressive PTC.


Asunto(s)
Células Dendríticas , Cáncer Papilar Tiroideo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/genética , Proteína 3 de la Membrana Asociada a Lisosoma/metabolismo , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Masculino , Femenino , Microambiente Tumoral/inmunología , Persona de Mediana Edad , Escape del Tumor , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Proteínas de Neoplasias
13.
Phytother Res ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706097

RESUMEN

Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.

14.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731437

RESUMEN

The Mn-Fe oxide material possesses the advantages of abundant availability, low cost, and non-toxicity as an energy storage material, particularly addressing the limitation of sluggish reoxidation kinetics observed in pure manganese oxide. However, scaling up the thermal energy storage (TCES) system poses challenges to the stability of the reactivities and mechanical strength of materials over long-term cycles, necessitating their resolution. In this study, Mn-Fe granules were fabricated with a diameter of approximately 2 mm using the feasible and scalable drop technique, and the effects of Y2O3-stabilized ZrO2 (YSZ) and SiO2 doping, at various doping ratios ranging from 1-20 wt%, were investigated on both the anti-sintering behavior and mechanical strength. In a thermal gravimetric analyzer, the redox reaction tests showed that both the dopants led to an enhancement in the reoxidation rates when the doping ratios were in an appropriate range, while they also brought about a decrease in the reduction rate and energy storage density. In a packed-bed reactor, the results of five consecutive redox tests showed a similar pattern to that in a thermal gravimetric analyzer. Additionally, the doping led to the stable reduction/oxidation reaction rates during the cyclic tests. In the subsequent 120 cyclic tests, the Si-doped granules exhibited volume expansion with a decreased crushing strength, whereas the YSZ-doped granules experienced drastic shrinkage with an increase in the crushing strength. The 1 wt% Si and 2 wt% Si presented the best synthetic performance, which resulted from the milder sintering effects during the long-term cyclic tests.

15.
Environ Res ; 252(Pt 2): 118841, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582418

RESUMEN

The significant threat of antibiotic resistance genes (ARGs) to aquatic environments health has been widely acknowledged. To date, several studies have focused on the distribution and diversity of ARGs in a single river while their profiles in complex river networks are largely known. Here, the spatiotemporal dynamics of ARG profiles in a canal network were examined using high-throughput quantitative PCR, and the underlying assembly processes and its main environmental influencing factors were elucidated using multiple statistical analyses. The results demonstrated significant seasonal dynamics with greater richness and relative abundance of ARGs observed during the dry season compared to the wet season. ARG profiles exhibited a pronounced distance-decay pattern in the dry season, whereas no such pattern was evident in the wet season. Null model analysis indicated that deterministic processes, in contrast to stochastic processes, had a significant impact on shaping the ARG profiles. Furthermore, it was found that Firmicutes and pH emerged as the foremost factors influencing these profiles. This study enhanced our comprehension of the variations in ARG profiles within canal networks, which may contribute to the design of efficient management approaches aimed at restraining the propagation of ARGs.


Asunto(s)
Ríos , Estaciones del Año , Ríos/microbiología , Farmacorresistencia Microbiana/genética , Hidrología , Genes Bacterianos , Antibacterianos/farmacología
16.
ACS Biomater Sci Eng ; 10(5): 3203-3217, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38557027

RESUMEN

The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.


Asunto(s)
Encéfalo , Hidrogeles , Células Madre Pluripotentes Inducidas , Organoides , Médula Espinal , Organoides/efectos de los fármacos , Organoides/citología , Organoides/metabolismo , Humanos , Animales , Médula Espinal/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Encéfalo/metabolismo , Ratas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacología , Laminina/química , Proteoglicanos/química , Ratas Sprague-Dawley , Combinación de Medicamentos , Colágeno
17.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38593429

RESUMEN

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Asunto(s)
Diferenciación Celular , Matriz Extracelular Descelularizada , Hidrogeles , Células Madre Pluripotentes Inducidas , Organoides , Placenta , Médula Espinal , Humanos , Organoides/citología , Organoides/metabolismo , Organoides/efectos de los fármacos , Femenino , Placenta/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Embarazo , Hidrogeles/química , Hidrogeles/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Diferenciación Celular/efectos de los fármacos , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacología , Laminina/química
18.
ACS Appl Mater Interfaces ; 16(14): 17954-17964, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562008

RESUMEN

Physical unclonable functions (PUFs) based on uncontrollable fabrication randomness are promising candidates for anticounterfeiting applications. Currently, the most popular optical PUFs are generally constructed from the scattering, fluorescent, or Raman phenomenon of nanomaterials. To further improve the security level of optical PUFs, advanced functions transparent to the above optical phenomenon have always been perused by researchers. Herein, we propose a new type of PUF based on the photothermal effect of gold nanoparticles, which shows negligible scattering, fluorescent, or Raman responses. The gold nanoparticles are randomly dispersed onto the surface of fused silica, which can enhance the photothermal effect and facilitate high contrast responses. By tuning the areal density of the gold nanoparticles, the optimized encoding capacity (2319) and the total authentication error probability (3.6428 × 10-24) are achieved from our PUF due to excellent bit uniformity (0.519) and inter Hamming distances (0.503). Moreover, the intra-Hamming distance (0.044) indicates the desired reliability. This advanced PUF with invisible features and high contrast responses provides a promising opportunity to implement authentication and identification with high security.

19.
ArXiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38560741

RESUMEN

In the wake of epidemics, quarantine measures are typically recommended by health authorities or governments to help control the spread of the disease. Compared with mandatory quarantine, voluntary quarantine offers individuals the liberty to decide whether to isolate themselves in case of infection exposure, driven by their personal assessment of the trade-off between economic loss and health risks as well as their own sense of social responsibility and concern for public health. To better understand self-motivated health behavior choices under these factors, here we incorporate voluntary quarantine into an endemic disease model -- the susceptible-infected-susceptible (SIS) model -- and perform comprehensive agent-based simulations to characterize the resulting behavior-disease interactions in structured populations. We quantify the conditions under which voluntary quarantine will be an effective intervention measure to mitigate disease burden. Furthermore, we demonstrate how individual decision-making factors, including the level of temptation to refrain from quarantine and the degree of social compassion, impact compliance levels of voluntary quarantines and the consequent collective disease mitigation efforts. We find that successful disease control requires either a sufficiently low level of temptation or a sufficiently high degree of social compassion, such that even complete containment of the epidemic is attainable. In addition to well-mixed populations, our simulation results are applicable to other more realistic social networks of contacts, including spatial lattices, small-world networks, and real social networks. Our work offers new insights into the fundamental social dilemma aspect of disease control through non-pharmaceutical interventions, such as voluntary quarantine and isolation, where the collective outcome of individual decision-making is crucial.

20.
Chemosphere ; 356: 141840, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582167

RESUMEN

The extensive use of tetracyclines (TCs) has led to their widespread distribution in the environment, causing serious harm to ecosystems because of their toxicity and resistance to decomposition. Adsorption is presently the principal approach to dispose of TCs, and the development of excellent adsorbents is crucial to TC removal. Herein, a novel amorphous cobalt carbonate hydroxide (ACCH) was successfully prepared by a one-step solvothermal method, which was identified as Co(CO3)0·63(OH)0.74·0.07H2O. The ultimate adsorption capacity of ACCH for TC reaches 2746 mg g-1, and the excellent adsorption performance can be maintained over a wide pH (3.0-11.0) and temperature (10-70 °C) range. Moreover, ACCH also exhibits a wonderful adsorption performance for other organic contaminants, such as ciprofloxacin and Rhodamine B. The TC adsorption process can be reasonably described by the pseudo-second-order kinetic model, intraparticle model and Langmuir isothermal model. The experimental results in this work suggest that the excellent adsorption performance of ACCH is ascribed to the large specific surface area, alkaline characteristics and numerous functional groups of ACCH. Accordingly, this work provides a promising strategy for the development of highly-efficient adsorbents and demonstrates their application prospects in environmental remediation.


Asunto(s)
Carbonatos , Cobalto , Tetraciclina , Cobalto/química , Adsorción , Tetraciclina/química , Carbonatos/química , Cinética , Contaminantes Químicos del Agua/química , Nanoestructuras/química , Concentración de Iones de Hidrógeno , Temperatura , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA