Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38993025

RESUMEN

Metal halide perovskites have demonstrated superior sensitivity, lower detection limits, stability, and exceptional photoelectric properties in comparison to existing commercially available X-ray detector materials, showing their potential for shaping the next generation of X-ray detectors. Nevertheless, significant challenges persist in the seamless integration of these materials into pixelated array sensors for large-area X-ray direct detection imaging. In this article, we propose a strategy for fabricating large-scale array devices using a double-sided bonding process. The approach involves depositing a wet film on the surface of a thin-film transistor substrate to establish a robust bond between the substrate and δ-CsPbI3 wafer via van der Waals force, thereby facilitating area-array imaging. Additionally, the freestanding polycrystalline δ-CsPbI3 wafer demonstrated a competitive ultralow detection limit of 3.46 nGyair s-1 under 50 kVP X-ray irradiation, and the δ-CsPbI3 wafer still maintains a stable signal output (signal current drift is 3.5 × 10-5 pA cm-1 s-1 V-1) under the accumulated radiation dose of 234.9 mGyair. This strategy provides a novel perspective for the industrial production of large-area X-ray flat panel detectors utilizing perovskites and their derivatives.

2.
Am J Transl Res ; 16(6): 2699-2710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006281

RESUMEN

BACKGROUND: Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS: Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS: MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS: Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.

3.
Int J Biol Macromol ; : 133790, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992545

RESUMEN

Using lignin as a raw material to prepare fluorescent nanomaterials represents a significant pathway toward the high-value utilization of waste biomass. In this study, Ni-doped lignin carbon dots (Ni-LCDs) were rapidly synthesized with a yield of 63.22 % and a quantum yield of 8.25 % using a green and simple hydrothermal method. Exploiting the inner filter effect (IFE), Cr(VI) effectively quenched the fluorescence of the Ni-LCDs, while the potent reducing agent ascorbic acid (AA) restored the quenched fluorescence, thus establishing a highly sensitive fluorescence switch sensor platform for the sequential detection of Cr(VI) and AA. Importantly, the integration of a smartphone facilitated the portability of Cr(VI) and AA detection, enabling on-site, in-situ, and real-time monitoring. Ultimately, the developed fluorescence and smartphone-assisted sensing platform was successfully applied to detect Cr(VI) in actual water samples and AA in various fruits. This study not only presents an efficient method for the conversion and utilization of waste lignin but also broadens the application scope of the CDs in the field of smart sensors.

4.
Adv Exp Med Biol ; 1445: 59-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967750

RESUMEN

According to classical immunology theory, immunoglobulin (Ig) is exclusively produced by differentiated B lymphocytes, which exhibit a typical tetrapeptide chain structure and are predominantly present on the surface of B cells and in bodily fluids. B-Ig is one of the critical effector molecules for humoral immune responses specifically recognising antigens and eliminating them. However, mounting evidence has demonstrated that Ig is widely expressed in non B lineage cells, especially malignant ones (referred to as non B-Ig). Interestingly, non B-Ig mainly resides in the cytoplasm and secretion, but to some extent on the cell surface. Furthermore non B-Ig not only displays a tetrapeptide chain structure but also shows free heavy chains and free light chains (FLCs). Additionally, Ig derived from non B cancer cell typically displays unique glycosylation modifications. Functionally, non B-Ig demonstrated diversity and versatility, showing antibody activity and cellular biological activity, such as promoting cell proliferation and survival, and it is implicated in cancer progression and some immune-related diseases, such as renal diseases.


Asunto(s)
Linfocitos B , Humanos , Animales , Glicosilación , Linfocitos B/inmunología , Inmunoglobulinas/inmunología , Inmunoglobulinas/metabolismo , Inmunoglobulinas/química , Neoplasias/inmunología , Neoplasias/patología , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/metabolismo
5.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952389

RESUMEN

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Asunto(s)
Envejecimiento , Mitocondrias , Ovario , Humanos , Femenino , Mitocondrias/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ovario/metabolismo , Ovario/fisiología , Animales , Antioxidantes/uso terapéutico , Oocitos/metabolismo , Oocitos/fisiología , Mitofagia/fisiología
6.
J Transl Med ; 22(1): 593, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918793

RESUMEN

BACKGROUND: Sorafenib resistance is becoming increasingly common and disadvantageous for hepatocellular carcinoma (HCC) treatment. Ferroptosis is an iron dependent programmed cell death underlying the mechanism of sorafenib. Iron is crucial for synthesis of cofactors essential to mitochondrial enzymes and necessary for HCC proliferation, while mitochondrial iron overload and oxidative stress are associated with sorafenib induced ferroptosis. However, the crosstalk among iron homeostasis and sorafenib resistance is unclear. METHODS: We conducted bioinformatics analysis of sorafenib treated HCC datasets to analyze GCN5L1 and iron related gene expression with sorafenib resistance. GCN5L1 deleted HCC cell lines were generated by CRISPR technology. Sorafenib resistant HCC cell line was established to validate dataset analysis and evaluate the effect of potential target. RESULTS: We identified GCN5L1, a regulator of mitochondrial acetylation, as a modulator in sorafenib-induced ferroptosis via affecting mitochondrial iron homeostasis. GCN5L1 deficiency significantly increased sorafenib sensitivity in HCC cells by down-regulating mitochondrial iron transporters CISD1 expression to induce iron accumulation. Mitochondrial iron accumulation leads to an acceleration in cellular and lipid ROS. Sorafenib resistance is related to CISD1 overexpression to release mitochondrial iron and maintaining mitochondrial homeostasis. We combined CISD1 inhibitor NL-1 with sorafenib, which significantly enhanced sorafenib-induced ferroptosis by promoting mitochondrial iron accumulation and lipid peroxidation. The combination of NL-1 with sorafenib enhanced sorafenib efficacy in vitro and in vivo. CONCLUSIONS: Our findings demonstrate that GCN5L1/CISD1 axis is crucial for sorafenib resistance and would be a potential therapeutic strategy for sorafenib resistant HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Ferroptosis , Homeostasis , Hierro , Neoplasias Hepáticas , Mitocondrias , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Hierro/metabolismo , Humanos , Homeostasis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Animales , Ferroptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Respir Med Case Rep ; 50: 102045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868162

RESUMEN

Introduction: Foreign bodies in the airways can cause significant morbidity and mortality. If emergency personnel are unable to clear an airway obstruction frequently results in cardiac arrest. Patient concerns: A 78-year-old man developed a persistent cough and dyspnoea after consuming alcohol. Fiberoptic bronchoscopy was performed, revealing complete blockage of the main airways on both sides by fish. Diagnosis: Endotracheal foreign body. Interventions: The foreign body was removed with an endotracheal tube under the guidance of a fiberoptic bronchoscope. Outcomes: The airway foreign body had been successfully removed and the man recovered uneventfully. Conclusion: When repeated attempts to extract airway foreign bodies under the guidance of bronchoscopy have failed, endotracheal intubation can be considered as a viable alternative in emergency situations.

8.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930967

RESUMEN

The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.


Asunto(s)
Antibacterianos , Titanio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Titanio/química , Titanio/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
9.
J Thorac Dis ; 16(5): 2822-2834, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38883611

RESUMEN

Background: Several studies have shown that surgery may improve prognosis in patients with limited-stage small cell lung cancer (LS-SCLC). This study aimed to compare the effects of different treatment modalities on lung cancer specific survival (LCSS) and overall survival (OS) in LS-SCLC patients. Methods: The Surveillance, Epidemiology and End Results (SEER) database was used to identify patients diagnosed with LS-SCLC. Kaplan-Meier analysis was used to determine the effect of each factor on LCSS and OS. Multivariate analysis was used to analyze the relationship between patient characteristics and survival of different treatment modalities. Results: After a series of screening steps, this study ultimately analyzed the prognosis of patients with stage I-IIIa SCLC under different treatment modalities. The results showed that lobectomy plus postoperative chemoradiotherapy was significantly better than chemoradiotherapy or lobectomy in treatment (all P<0.05). For stage II and IIIA patients, lobectomy plus postoperative chemotherapy ± radiotherapy had similar efficacy to chemoradiotherapy in improving patients' LCSS and OS (all P>0.05), and lobectomy plus postoperative chemotherapy ± radiotherapy did not significantly improve LCSS or OS compared with lobectomy (all P>0.05). Conclusions: For stage II-IIIa SCLC patients, lobectomy might have similar efficacy to chemoradiotherapy in improving LCSS and OS, and there is no need for adjuvant chemotherapy ± radiotherapy after surgery. For stage I SCLC patients, lobectomy plus postoperative chemoradiotherapy might be superior to chemoradiotherapy or lobectomy in improving LCSS and OS; however, the conclusion might be biased. These results suggest that the effect of surgery on SCLC patients may be worthy of further study.

10.
Phys Chem Chem Phys ; 26(24): 17383-17395, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860766

RESUMEN

Although GaN is a promising candidate for semiconductor devices, degradation of GaN-based device performance may occur when the device is bombarded by high-energy charged particles during its application in aerospace, astronomy, and nuclear-related areas. It is thus of great significance to explore the influence of irradiation on the microstructure and electronic properties of GaN and to reveal the internal relationship between the damage mechanisms and physical characteristics. Using a combined density functional theory (DFT) and ab initio molecular dynamics (AIMD) study, we explored the low-energy recoil events in GaN and the effects of point defects on GaN. The threshold displacement energies (Eds) significantly depend on the recoil directions and the primary knock-on atoms. Moreover, the Ed values for nitrogen atoms are smaller than those for gallium atoms, indicating that the displacement of nitrogen dominates under electron irradiation and the created defects are mainly nitrogen vacancies and interstitials. The formation energy of nitrogen vacancies and interstitials is smaller than that for gallium vacancies and interstitials, which is consistent with the AIMD results. Although the created defects improve the elastic compliance of GaN, these radiation damage states deteriorate its ability to resist external compression. Meanwhile, these point defects lead the Debye temperature to decrease and thus increase the thermal expansion coefficients of GaN. As for the electronic properties of defective GaN, the point defects have various effects, i.e., VN (N vacancy), Gaint (Ga interstitial), Nint (N interstitial), and GaN (Ga occupying the N lattice site) defects induce the metallicity, and NGa (N occupying the Ga lattice site) defects decrease the band gap. The presented results provide underlying mechanisms for defect generation in GaN, and advance the fundamental understanding of the radiation resistances of semiconductor materials.

11.
Biomed Pharmacother ; 177: 117003, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908207

RESUMEN

This review presents a comprehensive exploration of gene editing technologies and their potential applications in the treatment of liver fibrosis, a condition often leading to serious complications such as liver cancer. Through an in-depth review of current literature and critical analysis, the study delves into the intricate signaling pathways underlying liver fibrosis development and examines the promising role of gene editing in alleviating this disease burden. Gene editing technologies offer precise, efficient, and reproducible tools for manipulating genetic material, holding significant promise for basic research and clinical practice. The manuscript highlights the challenges and potential risks associated with gene editing technology. By synthesizing existing knowledge and exploring future perspectives, this study aims to provide valuable insights into the potential of precision gene editing to combat liver fibrosis and its associated complications, ultimately contributing to advances in liver fibrosis research and therapy.

12.
J Colloid Interface Sci ; 673: 669-678, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901357

RESUMEN

Catalytic oxidation of carbon monoxide (CO) by Cu/Al2O3 has garnered increasing interest in recent years due to its promising application prospects. Numerous investigations conducted on the Cu/Al2O3 system, but its catalytic performance for CO oxidation is still not as promising as that of precious metal catalysts. Increasing the loading amount of the active Cu on Al2O3 surface is a feasible method for improving its activity. However, with the increase of Cu loading, the agglomeration and enlargement of Cu particles is inevitable, which reduces the active Cu amount. Therefore, the utilization rate of Cu atoms is not high and the catalytic performance often can not further rise. Enhancing active Cu loading amount as high as possible is a prerequisite to further enlarge the activity of Cu/Al2O3 catalyst. Herein, self-synthesized Al2O3 nanofibers (Al2O3-nf) with high specific surface area and abundant penta-coordinated aluminum (AlV) are used as the support to maximize the Cu loading amount by chemical vapor deposition (CVD). And commercially available α-Al2O3 is used for comparative experiment. The high specific surface area could make Cu high dispersion on Al2O3, even at 20 wt% Cu loads, which is beneficial to high concentration load of active Cu. The catalytic activity of Cu/Al2O3-nf-CVD gradually increases with the increase of Cu loading from 2 wt% to 20 wt%, exhibiting a clear linear correlation with the surface content of Cu0 on the catalyst. Meanwhile, this result confirms that Cu0 plays a crucial role in CO oxidation of Cu/Al2O3. However, commercial α-Al2O3 reaches its highest activity when the Cu load is 5%, and then its activity begins to decrease due to the agglomeration of particles. Moreover, Cu/Al2O3-nf-CVD also exhibits remarkable thermal stability for CO oxidation. This work highlights a new strategy to synthesis of high Cu loading amount, high activity and thermostable Cu/Al2O3 catalyst for low-temperature oxidation of CO.

13.
Faraday Discuss ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836616

RESUMEN

Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from Bacillus megaterium. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C-H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM-P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124546, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824755

RESUMEN

Mid-infrared (MIR) spectroscopy can characterize the content and structural changes of macromolecular components in different breast tissues, which can be used for feature extraction and model training by machine learning to achieve accurate classification and recognition of different breast tissues. In parallel, the one-dimensional convolutional neural network (1D-CNN) stands out in the field of deep learning for its ability to efficiently process sequential data, such as spectroscopic signals. In this study, MIR spectra of breast tissue were collected in situ by coupling the self-developed MIR hollow optical fiber attenuated total reflection (HOF-ATR) probe with a Fourier transform infrared spectroscopy (FTIR) spectrometer. Staging analysis was conducted on the changes in macromolecular content and structure in breast cancer tissues. For the first time, a trinary classification model was established based on 1D-CNN for recognizing normal, paracancerous and cancerous tissues. The final predication results reveal that the 1D-CNN model based on baseline correction (BC) and data augmentation yields more precise classification results, with a total accuracy of 95.09%, exhibiting superior discrimination ability than machine learning models of SVM-DA (90.00%), SVR (88.89%), PCA-FDA (67.78%) and PCA-KNN (70.00%). The experimental results suggest that the application of 1D-CNN enables accurate classification and recognition of different breast tissues, which can be considered as a precise, efficient and intelligent novel method for breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Femenino , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Redes Neurales de la Computación
15.
Sci Bull (Beijing) ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38880682

RESUMEN

The water-energy nexus has garnered worldwide interest. Current dual-functional research aimed at co-producing freshwater and electricity faces significant challenges, including sub-optimal capacities ("1 + 1 < 2"), poor inter-functional coordination, high carbon footprints, and large costs. Mainstream water-to-electricity conversions are often compromised owing to functionality separation and erratic gradients. Herein, we present a sustainable strategy based on renewable biomass that addresses these issues by jointly achieving competitive solar-evaporative desalination and robust clean electricity generation. Using hydrothermally activated basswood, our solar desalination exceeded the 100% efficiency bottleneck even under reduced solar illumination. Through simple size-tuning, we achieved a high evaporation rate of 3.56 kg h-1 m-2 and an efficiency of 149.1%, representing 128%-251% of recent values without sophisticated surface engineering. By incorporating an electron-ion nexus with interfacial Faradaic electron circulation and co-ion-predominated micro-tunnel hydrodynamic flow, we leveraged free energy from evaporation to generate long-term electricity (0.38 W m-3 for over 14d), approximately 322% of peer performance levels. This inter-functional nexus strengthened dual functionalities and validated general engineering practices. Our presented strategy holds significant promise for global human-society-environment sustainability.

16.
Small ; : e2400668, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881363

RESUMEN

Alkali-metal doped perovskite oxides have emerged as promising materials due to their unique properties and broad applications in various fields, including photovoltaics and catalysis. Understanding the complex interplay between alkali metal doping, structural modifications, and their impact on performance remains a crucial challenge. In this study, this challenge is addressed by investigating the synthesis and properties of Rb-doped perovskite oxides. These results reveal that the doping of Rb into perovskite oxides function as a structural modifier in the as-synthesized samples and during the oxygen evolution reaction (OER) as well. Electron microscopy and first-principles calculations confirm the enrichment of Rb on the surface of the as-synthesized sample. Further investigations into the electrocatalytic reaction revealed that the Rb-doped perovskite underwent drastic restructuring with Rb leaching and formation of strontium oxide.

17.
Mol Cell Endocrinol ; 591: 112278, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795826

RESUMEN

The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Nicho de Células Madre , Animales , Humanos , Masculino , Comunicación Celular , Diferenciación Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Espermatogénesis , Empalmosomas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Testículo/metabolismo , Testículo/citología , Genes Letales
18.
J Agric Food Chem ; 72(23): 12896-12914, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38810024

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Regulación hacia Arriba , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Humanos , Animales , Regulación hacia Arriba/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/genética , Fitoquímicos/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología
19.
Sci Total Environ ; 931: 172901, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697549

RESUMEN

High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high­nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.


Asunto(s)
Desnitrificación , Ácidos Grasos Volátiles , Metano , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Interacciones Microbianas , Nitratos/metabolismo , Reactores Biológicos/microbiología
20.
Mar Drugs ; 22(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786581

RESUMEN

Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.


Asunto(s)
Antivirales , Virus de la Influenza A , Ácido Micofenólico , Infecciones por Orthomyxoviridae , Replicación Viral , Animales , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Ácido Micofenólico/farmacología , Ratones , Replicación Viral/efectos de los fármacos , Humanos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Ratones Endogámicos BALB C , Perros , Femenino , Células de Riñón Canino Madin Darby , Células A549 , Organismos Acuáticos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA