Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale Adv ; 2(10): 4437-4449, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132936

RESUMEN

A hierarchical zeolite composite, MOR@ZSM-5, with two distinct frameworks has been successfully fabricated via the repeated crystallization of ZSM-5 nanocrystals on mordenite surfaces. To avoid their phase separation, the surface of mordenite was pretreated with tetra(n-butyl)ammonium hydroxide (TBAOH) to induce the formation of the ZSM-5 nuclei, and it was subsequently modified by the continuous growth of nanocrystalline ZSM-5 on the entire area of the mordenite surfaces. Interestingly, the fully overgrown MOR@ZSM-5 composite exhibits a remarkable improvement in the ethylbenzene selectivity (>60%) obtained from the alkylation of benzene with ethanol with respect to isolated zeolites and their physical mixture due to the enhanced external surface area and hierarchical porosity as well as the reasonable acidity provided by the fully dispersed ZSM-5 nanocrystals on the mordenite surfaces. Moreover, coke species deposited on the designed composites are likely located at the external surfaces and do not considerably deteriorate the catalytic performance, whereas they are deposited predominantly in the micropores over the incompletely overgrown MOR@ZSM-5 composite. The present study illustrates the advantages of the overgrown zeolite composites of two incompatible frameworks in tailoring the hierarchical porosity, adjusting the acidic properties, and eventually controlling the product selectivity in acid-catalyzed reactions such as the alkylation of benzene with ethanol.

2.
Chempluschem ; 84(10): 1503-1507, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31943925

RESUMEN

The development of bifunctional catalysts is important in the synthesis of materials for multiple sequential reactions in one-pot tandem catalytic processes. In this context, a dealuminated acid-base bifunctional catalyst with a hierarchical aluminum-rich faujasite structure (zeolite Y) has been successfully prepared by the solid-state dealumination of NaX nanosheets with ammonium hexafluorosilicate (AHFS). The characteristic properties of catalysts were examined by means of XRD, SEM, TEM, N2 physisorption technique, ICP-OES, NH3 -TPD, CO2 -TPD, 27 Al NMR, 29 Si NMR, Al K-edge XANES, and Pyridine-FTIR. The materials exhibit a superior catalytic performance for one-pot tandem catalysis, for example, the synthesis of trans-ß-nitrostyrene with a yield close to 100 % in a tandem deacetalization-Henry reaction of benzaldehyde dimethyl acetal with nitromethane. The high catalytic performance is attributed to the facile transfer of bulky molecules between acid and basic sites in the presence of hierarchical structures.

3.
RSC Adv ; 9(32): 18087-18097, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35515215

RESUMEN

Hierarchical ZSM-12 nanolayers have been successfully synthesized via a one-pot hydrothermal process using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (TPOAC) as a secondary organic structure-directing agent (OSDA). The as-synthesized ZSM-12 samples were characterized by means of XRD, SEM, TEM, N2 physisorption, and NH3-TPD. This clearly demonstrates that the TPOAC content and the crystallization time are crucial parameters for the formation of nanolayered structures. The presence of such a structure significantly improves the mesoporosity of ZSM-12 by generating interstitial mesopores between nanolayers, eventually resulting in enhancing external surface areas and mesopore volumes, and subsequently promoting the molecular diffusion inside a zeolite framework. To illustrate its advantages as a heterogeneous catalyst, hierarchical ZSM-12 nanolayers were applied in the catalytic application of an esterification of levulinic acid with ethanol to ethyl levulinate. Interestingly, hierarchical ZSM-12 nanolayers exhibit an improvement of catalytic activity in terms of levulinic acid conversion (78.5%) and ethyl levulinate selectivity (98.7%) compared with other frameworks of hierarchical zeolite nanosheets, such as ZSM-5 and FAU. The example reported herein demonstrates an efficient way to synthesize a unidimensional pore zeolite with hierarchical nanolayered structure via a dual template method and also opens up perspectives for the application of different hierarchical porous systems of zeolites in the bulky-molecule reactions such as in the case of levulinic acid esterification with ethanol.

4.
ACS Appl Mater Interfaces ; 10(19): 16358-16366, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29676158

RESUMEN

The composite of hierarchical faujasite nanosheets and zeolitic imidazolate framework-8 (Hie-FAU-ZIF-8) has been successfully prepared via a stepwise deposition of ZIF-8 on modified zeolite surfaces. Compared to the direct deposition of metal organic frameworks (MOFs) on zeolite surfaces, ZIF-8 nanospheres were selectively attached to the external surfaces of the MOF ligand-grafted FAU crystals because of the enhancing interaction between the zeolite and MOF in the composite. In addition, the degree of surface functionalization can be greatly enhanced because of the presence of hierarchical structures. This behavior leads to an increase in the deposited MOF content, improving the hydrophobic properties of the zeolite surfaces. Interestingly, the designed hierarchical composite exhibits outstanding catalytic properties as an acid-base catalyst for the aldol condensation of 5-hydroxymethylfurfural with acetone. Compared to the isolated FAU and ZIF-8, a high yield of the product, 4-[5-(hydroxymethyl)furan-2-yl]but-3-en-2-one (67%), can be observed in the composite because of the synergistic effect between the Na+-stabilized zeolite framework and the imidazolate linkers bearing basic nitrogen functions. This opens up interesting perspectives for the development of new organic and inorganic hybrid materials as heterogeneous acid-base catalysts.

5.
ChemCatChem ; 9(20): 3942-3954, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29201243

RESUMEN

The influence of framework substituents (Al3+, Ga3+, Fe3+ and B3+) and morphology (bulk vs. nanometer-sized sheets) of MFI zeolites on the acidity and catalytic performance in the methanol-to-hydrocarbons (MTH) reaction was investigated. The Brønsted acid density and strength decreased in the order Al(OH)Si>Ga(OH)Si>Fe(OH)Si≫B(OH)Si. Pyridine 15N NMR spectra confirmed the differences in the Brønsted and Lewis acid strengths but also provided evidence for site heterogeneity in the Brønsted acid sites. Owing to the lower efficiency with which tervalent ions can be inserted into the zeolite framework, sheet-like zeolites exhibited lower acidity than bulk zeolites. The sheet-like Al-containing MFI zeolite exhibited the greatest longevity as a MTH catalyst, outperforming its bulk [Al]MFI counterpart. Although the lower acidity of bulk [Ga]MFI led to a better catalytic performance than bulk [Al]MFI, the sheet-like [Ga]MFI sample was found to be nearly inactive owing to lower and heterogeneous Brønsted acidity. All Fe- and B-substituted zeolite samples displayed very low catalytic performance owing to their weak acidity. Based on the product distribution, the MTH reaction was found to be dominated by the olefins-based catalytic cycle. The small contribution of the aromatics-based catalytic cycle was larger for bulk zeolite than for sheet-like zeolite, indicating that shorter residence time of aromatics can explain the lower tendency toward coking and enhanced catalyst longevity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA