Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107940, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39476960

RESUMEN

Norbin (Neurochondrin, NCDN) is a GPCR adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady state trafficking and sometimes their agonist-induced internalisation, as well as their signalling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity. Here, we identify C5aR1 and CXCR4 as direct Norbin interactors and used mice with myeloid-Norbin deficiency to investigate the role of Norbin in the trafficking of endogenous C5aR1 and CXCR4 in primary neutrophils by flow cytometry and cell fractionation. We show that Norbin mediates the agonist-induced internalisation of C5aR1 through a ß-arrestin-dependent mechanism and limits the recycling of internalised C5aR1 and CXCR4 back to the cell surface. Norbin does not control the constitutive internalisation of C5aR1 and CXCR4, nor does it affect the agonist-induced internalisation of CXCR4. Norbin suppresses C5aR1 signalling in mouse neutrophils by limiting the C5a-stimulated membrane translocation of Tiam1, Vav, and PKCδ, and activation of Erk and p38 Mapk pathways, as well as Gαi-dependent ROS production. Our study demonstrates how Norbin suppresses C5aR1 and CXCR4 function in neutrophils and increases our understanding of the mechanisms through which Norbin regulates GPCR trafficking generally, by identifying its importance in ß-arrestin recruitment, ß-arrestin dependent agonist-induced receptor internalisation, and receptor recycling.

2.
Int J Biol Macromol ; 280(Pt 2): 135816, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306183

RESUMEN

Acetylxylan esterases (AXEs) are essential enzymes that break down the acetyl groups in acetylated xylan found in plant cell walls polysaccharides. They work synergistically with backbone-depolymerizing xylanolytic enzymes to accelerate the degradation of complex polysaccharides. In this study, we cloned the gene axeA, which encodes the acetylxylan esterase from Aspergillus nidulans FGSC A4 (AxeAN), into the pEXPYR expression vector and introduced it into the high protein-producing strain A. nidulans A773. The purified AxeAN, with a molecular weight of 33.5 kDa as confirmed by SDS-PAGE, was found to be active on ρ-nitrophenyl acetate (ρNPA), exhibiting a remarkably high specific activity (170 U mg-1) at pH 7.0 and 55 °C. AxeAN demonstrated stability over a wide pH range (5.5-9.0), retaining >80% of its initial activity after 24 h. The KM and Vmax were 0.098 mmol L-1 and 320 U mg-1, respectively, using ρNPA as a substrate. We also evaluated the synergistic effect of AxeAN with an endo-1,4-ß-xylanase from Malbranchea pulchella (MpXyn10) in the hydrolysis of four different xylans (Birchwood, Beechwood, Oat spelt, and Arabinoxylan) to produce xylooligosaccharides (XOS). The best results were obtained using Birchwood xylan as substrate and MpXyn10-AxeAN as biocatalysts after 24 h of reaction (50 °C), with a XOS-yield of 91%, value 41% higher when compared to MpXyn10 (XOS-yield of 63%). These findings showed the potential of the application of AxeAN, together with other xylanases, to produce xylooligosaccharides with high purity and other products with high added value in the field of lignocellulosic biorefinery.

3.
Bioresour Bioprocess ; 11(1): 77, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073555

RESUMEN

The ß-glucosidase gene from Aspergillus nidulans FGSC A4 was cloned and overexpressed in the A. nidulans A773. The resulting purified ß-glucosidase, named AnGH3, is a monomeric enzyme with a molecular weight of approximately 80 kDa, as confirmed by SDS-PAGE. Circular dichroism further validated its unique canonical barrel fold (ß/α), a feature also observed in the 3D homology model of AnGH3. The most striking aspect of this recombinant enzyme is its robustness, as it retained 100% activity after 24 h of incubation at 45 and 50 ºC and pH 6.0. Even at 55 °C, it maintained 72% of its enzymatic activity after 6 h of incubation at the same pH. The kinetic parameters Vmax, KM, and Kcat/KM for ρ-nitrophenyl-ß-D-glucopyranoside (ρNPG) and cellobiose were also determined. Using ρNPG, the enzyme demonstrated a Vmax of 212 U mg - 1, KM of 0.0607 mmol L - 1, and Kcat/KM of 4521 mmol L - 1 s - 1 when incubated at pH 6.0 and 65 °C. The KM, Vmax, and Kcat/KM using cellobiose were 2.7 mmol L - 1, 57 U mg - 1, and 27 mmol -1 s - 1, respectively. AnGH3 activity was significantly enhanced by xylose and ethanol at concentrations up to 1.5 mol L - 1 and 25%, respectively. Even in challenging conditions, at 65 °C and pH 6.0, the enzyme maintained its activity, retaining 100% and 70% of its initial activity in the presence of 200 mmol L - 1 furfural and 5-hydroxymethylfurfural (HMF), respectively. The potential of this enzyme was further demonstrated by its application in the saccharification of the forage grass Panicum maximum, where it led to a 48% increase in glucose release after 24 h. These unique characteristics, including high catalytic performance, good thermal stability in hydrolysis temperature, and tolerance to elevated concentrations of ethanol, D-xylose, furfural, and HMF, position this recombinant enzyme as a promising tool in the hydrolysis of lignocellulosic biomass as part of an efficient multi-enzyme cocktail, thereby opening new avenues in the field of biotechnology and enzymology.

4.
J Phys Chem B ; 128(18): 4354-4366, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38683784

RESUMEN

G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 µm2/s), slow (∼0.04 µm2/s), and fast (∼0.14 µm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.


Asunto(s)
Receptor Muscarínico M1 , Ligandos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/química , Difusión , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Multimerización de Proteína/efectos de los fármacos , Animales , Espectrometría de Fluorescencia , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
5.
Food Chem ; 405(Pt B): 134939, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36403470

RESUMEN

Ferulic acid has antioxidant properties of interest to the food industry and can be released from natural plant fibres using feruloyl esterases. Esterases active at high temperatures are highly desirable but currently underrepresented. Here we report the biochemical characterization of the feruloyl esterase from Thermobacillus xylanilyticus. Specific activity of recombinant Tx-Est1 with ethyl ferulate was 29.2 ± 2.9 U mg-1, with a catalytic efficiency (Kcat/Km) of 393.7 ± 9.8 s-1mM-1. The temperature and pH optima were 60 °C and 7.5, whereby Tx-Est1 retains 70% activity after 25 h at 40 °C. MALDI-TOF MS revealed Tx-ESTI released ferulic acid from xylooligosaccharides with DP4-DP13, and from DP6-8 containing two ferulic acid groups. HPLC demonstrated ferulic acid release from destarched wheat bran was strongly potentiated by co-incubation with xylanase. These properties, especially the high activity at elevated temperatures, suggest Tx-Est1 can be employed for production of high-value compounds from agricultural waste or during plant polysaccharide saccharification.


Asunto(s)
Hidrolasas de Éster Carboxílico , Temperatura
6.
Proc Natl Acad Sci U S A ; 119(24): e2201103119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671422

RESUMEN

The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)-linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti-green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP-expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.


Asunto(s)
Corteza Cerebral , Hipocampo , Receptor Muscarínico M1 , Animales , Corteza Cerebral/metabolismo , Proteínas Fluorescentes Verdes , Hipocampo/metabolismo , Ligandos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Imagen Óptica , Receptor Muscarínico M1/química , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
7.
J Biol Chem ; 298(5): 101932, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35427647

RESUMEN

GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [32P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP. GPR84 was phosphorylated constitutively on residues Ser221 and Ser224, while various other amino acids are phosphorylated in response to 2-HTP. Consistent with this, an antiserum able to identify pSer221/pSer224 recognized GPR84 from cells treated with and without activators, whereas an antiserum able to identify pThr263/pThr264 only recognized GPR84 after exposure to 2-HTP and not DL-175. Two distinct GPR84 antagonists as well as inhibition of G protein-coupled receptor kinase 2/3 prevented phosphorylation of pThr263/pThr264, but neither strategy affected constitutive phosphorylation of Ser221/Ser224. Furthermore, mutation of residues Thr263 and Thr264 to alanine generated a variant of GPR84 also limited in 2-HTP-induced interactions with arrestin-2 and -3. By contrast, this mutant was unaffected in its capacity to reduce cAMP levels. Taken together, these results define a key pair of threonine residues, regulated only by subsets of GPR84 small molecule activators and by GRK2/3 that define effective interactions with arrestins and provide novel tools to monitor the phosphorylation and functional status of GPR84.


Asunto(s)
Arrestinas , Treonina , Arrestinas/metabolismo , Humanos , Ligandos , Mutación , Fosforilación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serina/metabolismo , Treonina/metabolismo , Arrestina beta 2/metabolismo
8.
J Mol Endocrinol ; 67(4): 173-188, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34382943

RESUMEN

Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.


Asunto(s)
Tejido Adiposo/metabolismo , Mama/metabolismo , Epitelio/metabolismo , Interleucina-10/metabolismo , Fenotipo , Premenopausia/metabolismo , Adipocitos/inmunología , Adipocitos/metabolismo , Adiposidad , Adulto , Biomarcadores , Mama/patología , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Citocinas/genética , Citocinas/metabolismo , Femenino , Expresión Génica , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/metabolismo , Humanos , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Obesidad/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Telómero/genética , Telómero/metabolismo , Adulto Joven
9.
PLoS One ; 16(8): e0247745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34460817

RESUMEN

BACKGROUND: The monocyte-to-lymphocyte ratio (MLR) has been advocated as a biomarker in tuberculosis. Our objective was to evaluate its clinical value and associations. METHODS: Blood counts, inflammatory markers and clinical parameters were measured in patients with and those screened for tuberculosis. Complete blood counts (CBCs) from a multi-ethnic population aged 16 to 65 years were evaluated; a sub-group with normal hematological indices was used to define the range of MLRs. RESULTS: Multivariate analysis in proven tuberculosis (n = 264) indicated MLR associated with low serum albumin, high white cell counts and a positive culture; values were higher in sputum smear-positive pulmonary tuberculosis (S+PTB). Analysis in S+PTB (n = 296) showed higher MLRs in males and those with high neutrophil counts, low serum albumin and high C-reactive protein. The diagnostic value of MLRs was assessed by comparing notified patients with TB (n = 264) with denotified cases (n = 50), active case-finding in non-contacts (TB n = 111 and LTBI n = 373) and contacts of S+PTB (n = 149) with S+PTB found at screening (n = 75). Sensitivities and specificities ranged from 58.0-62.5% and 50.0-70.0% respectively for optimal cut-off values, defined by ROC curves. In CBCs obtained over one month, ratios correlated with neutrophil counts (ρ = 0.48, P<0.00001, n = 14,573; MLR = 0.45 at 8-8.9 x 109/L) and were higher in males than females (P<0.0001). The MLR range (mean ± 2SD) in those with normal hematological indices (n = 3921: females 0.122-0.474; males 0.136-0.505) paralleled LTBI MLRs. Ratios did not predict death (n = 29) nor response to treatment (n = 178 S+PTB with follow-up CBCs). Ratios were higher in males than female in the 16-45 years age group, where immune differences due to sex hormones are likely greatest. CONCLUSIONS: Severe tuberculosis and male sex associated with high MLRs; the same variables likely affect the performance of other biomarkers. The ratio performed poorly as a clinical aid.


Asunto(s)
Recuento de Leucocitos , Recuento de Linfocitos , Monocitos/patología , Tuberculosis Pulmonar/diagnóstico , Adolescente , Adulto , Anciano , Proteína C-Reactiva/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/patología , Curva ROC , Valores de Referencia , Sensibilidad y Especificidad , Albúmina Sérica/análisis , Índice de Severidad de la Enfermedad , Factores Sexuales , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Adulto Joven
10.
Comput Struct Biotechnol J ; 19: 1108-1118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33680354

RESUMEN

Effective use of plant biomass as an abundant and renewable feedstock for biofuel production and biorefinery requires efficient enzymatic mobilization of cell wall polymers. Knowledge of plant cell wall composition and architecture has been exploited to develop novel multifunctional enzymes with improved activity against lignocellulose, where a left-handed ß-3-prism synthetic scaffold (BeSS) was designed for insertion of multiple protein domains at the prism vertices. This allowed construction of a series of chimeras fusing variable numbers of a GH11 ß-endo-1,4-xylanase and the CipA-CBM3 with defined distances and constrained relative orientations between catalytic domains. The cellulose binding and endoxylanase activities of all chimeras were maintained. Activity against lignocellulose substrates revealed a rapid 1.6- to 3-fold increase in total reducing saccharide release and increased levels of all major oligosaccharides as measured by polysaccharide analysis using carbohydrate gel electrophoresis (PACE). A construct with CBM3 and GH11 domains inserted in the same prism vertex showed highest activity, demonstrating interdomain geometry rather than number of catalytic sites is important for optimized chimera design. These results confirm that the BeSS concept is robust and can be successfully applied to the construction of multifunctional chimeras, which expands the possibilities for knowledge-based protein design.

11.
J Biol Chem ; 296: 100139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268380

RESUMEN

CXCR4, a member of the family of chemokine-activated G protein-coupled receptors, is widely expressed in immune response cells. It is involved in both cancer development and progression as well as viral infection, notably by HIV-1. A variety of methods, including structural information, have suggested that the receptor may exist as a dimer or an oligomer. However, the mechanistic details surrounding receptor oligomerization and its potential dynamic regulation remain unclear. Using both biochemical and biophysical means, we confirm that CXCR4 can exist as a mixture of monomers, dimers, and higher-order oligomers in cell membranes and show that oligomeric structure becomes more complex as receptor expression levels increase. Mutations of CXCR4 residues located at a putative dimerization interface result in monomerization of the receptor. Additionally, binding of the CXCR4 antagonist IT1t-a small drug-like isothiourea derivative-rapidly destabilizes the oligomeric structure, whereas AMD3100, another well-characterized CXCR4 antagonist, does not. Although a mutation that regulates constitutive activity of CXCR4 also results in monomerization of the receptor, binding of IT1t to this variant promotes receptor dimerization. These results provide novel insights into the basal organization of CXCR4 and how antagonist ligands of different chemotypes differentially regulate its oligomerization state.


Asunto(s)
Bencilaminas/farmacología , Ciclamas/farmacología , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Tiourea/farmacología , Fármacos Anti-VIH/farmacología , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Ligandos , Unión Proteica , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Receptores CXCR4/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
12.
Nat Methods ; 16(6): 493-496, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110281

RESUMEN

Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.


Asunto(s)
Fluorescencia , Procesamiento de Imagen Asistido por Computador/métodos , Multimerización de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Ligandos , Microscopía Confocal , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Espectrometría de Fluorescencia
13.
Ann Bot ; 124(4): 553-566, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30137291

RESUMEN

BACKGROUND AND AIMS: The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. METHODS: Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. KEY RESULTS: Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. CONCLUSIONS: The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions.


Asunto(s)
Sequías , Poaceae , Biomasa , Lignina , Nutrientes
14.
Curr Opin Cell Biol ; 57: 40-47, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30453145

RESUMEN

G protein-coupled receptors (GPCRs) are an extensive class of trans-plasma membrane proteins that function to regulate a wide range of physiological functions. Despite a general perception that GPCRs exist as monomers an extensive literature has examined whether GPCRs can also form dimers and even higher-order oligomers, and if such organization influences various aspects of GPCR function, including cellular trafficking, ligand binding, G protein coupling and signalling. Here we focus on recent studies that employ approaches ranging from computational methods to single molecule tracking and both quantal brightness and fluorescence fluctuation measurements to assess the organization, stability and potential functional significance of dimers and oligomers within the class A, rhodopsin-like GPCR family.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Dimerización , Proteínas de Unión al GTP/metabolismo , Humanos , Transporte de Proteínas , Transducción de Señal
15.
Mol Pharmacol ; 95(2): 196-209, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30514721

RESUMEN

Chemoproteomic approaches to identify ligand-receptor interactions have gained popularity. However, identifying transmembrane receptors remains challenging. A new trifunctional probe to aid the nonbiased identification of such receptors was developed and synthesized using a convenient seven-step synthesis. This probe contained three functional groups: 1) an N-hydroxysuccinimide ester for ligand-coupling through free amines, 2) a diazirine moiety to capture the receptor of interest upon irradiation with UV light, and 3) a biotin group which allowed affinity purification of the final adduct using streptavidin. The interaction between the G protein-coupled tachykinin neurokinin 1 (NK1) receptor, expressed in an inducible manner, and the peptidic ligand substance P was used as a test system. Liquid chromatography-mass spectrometry analysis confirmed successful coupling of the probe to substance P, while inositol monophosphate accumulation assays demonstrated that coupling of the probe did not interfere substantially with the substance P-NK1 receptor interaction. Confocal microscopy and western blotting provided evidence of the formation of a covalent bond between the probe and the NK1 receptor upon UV activation. As proof of concept, the probe was used in full ligand-based receptor-capture experiments to identify the substance P-binding receptor via liquid chromatography-tandem mass spectrometry, resulting in the successful identification of only the NK1 receptor. This provides proof of concept toward general utilization of this probe to define interactions between ligands and previously unidentified plasma-membrane receptors.


Asunto(s)
Diazometano/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Cromatografía Liquida/métodos , Células HEK293 , Humanos , Ligandos , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Espectrometría de Masas en Tándem/métodos
16.
Int J Biol Macromol ; 120(Pt B): 2509-2516, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30195003

RESUMEN

Carbohydrate binding modules (CBMs) are non-catalytic domains within larger multidomain polypeptides. The CelH from Ruminoclostridium (Clostridium) thermocellum contains a family 11 CBM (RtCBM11) with high binding affinity for the linear polysaccharide ß-glucan, and low affinity for the branched xyloglucan. Screening a random RtCBM11 mutant phage library created by error prone PCR for xyloglucan binding identified RtCBM11 mutants with enhanced xyloglucan affinity. Subsequent recombination of the selected variants by site-directed mutagenesis generated the H102L/Y152F and Y46N/G52D/H102L/Y152F mutants. Fusion of the quadruple RtCBM11 mutant with the xyloglucanase from Aspergillus niveus increased the catalytic efficiency of the enzyme by 38%. Isothermal titration calorimetry demonstrated increased xyloglucan affinity for both mutants and reduced affinity for ß-glucan in the H102L/Y152F mutant. Molecular dynamics simulations indicated that the increased xyloglucan specificity results both from formation of a xylosyl binding pocket in the carbohydrate binding cleft, and via modulation of a hydrogen bond network between the oligosaccharide ligand and the protein. These results explain the improved xyloglucan binding in the RtCBM11 H102L/Y152F mutant and advance the understanding of the structural determinants of CBMs binding that discriminate between branched and unbranched polysaccharides.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Ingeniería de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Bacterianas/química , Firmicutes , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Receptores de Superficie Celular/química
17.
Int J Genomics ; 2018: 1652567, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155473

RESUMEN

The development of precise and modulated methods for customized manipulation of DNA is an important objective for the study and engineering of biological processes and is essential for the optimization of gene therapy, metabolic flux, and synthetic gene networks. The clustered regularly interspaced short palindromic repeat- (CRISPR-) associated protein 9 is an RNA-guided site-specific DNA-binding complex that can be reprogrammed to specifically interact with a desired DNA sequence target. CRISPR-Cas9 has been used in a wide variety of applications ranging from basic science to the clinic, such as gene therapy, gene regulation, modifying epigenomes, and imaging chromosomes. Although Cas9 has been successfully used as a precise tool in all these applications, some limitations have also been reported, for instance (i) a strict dependence on a protospacer-adjacent motif (PAM) sequence, (ii) aberrant off-target activity, (iii) the large size of Cas9 is problematic for CRISPR delivery, and (iv) lack of modulation of protein binding and endonuclease activity, which is crucial for precise spatiotemporal control of gene expression or genome editing. These obstacles hinder the use of CRISPR for disease treatment and in wider biotechnological applications. Protein-engineering approaches offer solutions to overcome the limitations of Cas9 and generate robust and efficient tools for customized DNA manipulation. Here, recent protein-engineering approaches for expanding the versatility of the Streptococcus pyogenes Cas9 (SpCas9) is reviewed, with an emphasis on studies that improve or develop novel protein functions through domain fusion or splitting, rational design, and directed evolution.

18.
Int J Biol Macromol ; 120(Pt A): 279-287, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30036621

RESUMEN

Microbial ß-galactosidases (EC 3.1.2.23) have applications in the production of galacto-oligosaccharides, which are established prebiotic food ingredients. The ß-galactosidase from Bacillus subtilis (YesZ) was expressed as a heterologous protein in Escherichia coli, and presented an optimum activity at pH 6.5 and 40 °C. The catalytic constants Km and Vmax of the enzyme were 8.26 mM and 1.42 µmol·min-1·mg-1 against pNP-ß-d-galactopyranoside, respectively. Structural characterization revealed that YesZ is a homotrimer in solution, and homology modeling suggested that the YesZ conserves a Cys cluster zinc binding site. Flame photometry experiments confirmed the presence of bound zinc in the recombinant enzyme, and YesZ activity was inhibited by 1 mM zinc, copper and silver ions. Transgalactosylation activity of YesZ was observed with the synthetic substrate p-NP-ßGal in the presence of a d-xylose acceptor, producing a ß-d-galactopyranosyl-(1 → 4)-d-xylopyranose disaccharide. Analysis of this disaccharide by MALDI-ToF-MS/MS suggested a ß-1,4 glycosidic linkage between a non-reducing galactose residue and the xylose. The ß-galactosidase YesZ from B. subtilis is a candidate for enzymatic synthesis showing favorable thermostability (with residual activity of 50% after incubation at 30 °C for 25 h) and transgalactosylation activity.


Asunto(s)
Bacillus subtilis/enzimología , Disacáridos/síntesis química , Multimerización de Proteína , beta-Galactosidasa/química , Bacillus subtilis/genética , Disacáridos/química , Estabilidad de Enzimas , Expresión Génica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
19.
FEBS J ; 285(12): 2319-2336, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701013

RESUMEN

Activation of the histamine-3 receptor (H3R) is involved in memory processes and cognitive action, while blocking H3R activation can slow the progression of neurological disorders, such as Alzheimer's disease, schizophrenia and narcolepsy. To date, however, no direct way to examine the activation of H3R has been utilized. Here, we describe a novel biosensor that can visualize the activation of H3R through an intramolecular fluorescence resonance energy transfer (FRET) signal. To achieve this, we constructed an intramolecular H3R FRET sensor with cyan fluorescent protein (CFP) attached at the C terminus and yellow fluorescent protein (YFP) inserted into the third intracellular loop. The sensor was found to internalize normally on agonist treatment. We measured FRET signals between the donor CFP and the acceptor YFP in living cells in real time, the results of which indicated that H3R agonist treatment (imetit or histamine) increases the FRET signal in a time- and concentration-dependent manner with Kon and Koff values consistent with published data and which maybe correlated with decreasing cAMP levels and the promotion of ERK1/2 phosphorylation. The FRET signal was inhibited by H3R antagonists, and the introduction of mutations at F419A, F423A, L426A and L427A, once again, the promotion of ERK1/2 phosphorylation, was diminished. Thus, we have built a H3R biosensor which can visualize the activation of receptor through real-time structure changes and which can obtain pharmacological kinetic data at the same time. The FRET signals may allow the sensor to become a useful tool for screening compounds and optimizing useful ligands.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia/métodos , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos H3/farmacología , Histamina/farmacología , Receptores Histamínicos H3/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Imidazoles/farmacología , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Plásmidos/química , Plásmidos/metabolismo , Receptores Histamínicos H3/genética , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección , Tritio
20.
Anal Biochem ; 540-541: 45-51, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29154787

RESUMEN

A paramagnetic nanocomposite coated with chitosan and N-(5-Amino-1-carboxy-pentyl) iminodiacetic acid (NTA) that is suitable for protein immobilization applications has been prepared and characterized. The nanoparticle core was synthesized by controlled aggregation of Fe3O4 under alkaline conditions, and Transmission Electron Microscopy revealed a size distribution of 10-50 nm. The nanoparticle core was coated with chitosan and derivatized with glutaraldehyde and NTA, as confirmed by Fourier Transform Infrared Spectroscopy. The final nanoparticles were used as a metal affinity matrix to separate a recombinant polyhistidine-tagged ß-galactosidase from Bacillus subtilis directly from E. coli cell lysates with high purity (>95%). After loading with Ni2+, nanoparticles demonstrated a binding capacity of 250 µg of a polyhistidine-tagged ß-galactosidase per milligram of support. The immobilized enzyme retained 80% activity after 9 cycles of washing, and the immobilized recombinant protein could be eluted with high purity with imidazole. The applications for these nanomagnetic composites extend beyond protein purification, and can also be used for immobilizing enzymes, where the ß-galactosidase immobilized on the nanomagnetic support was used in multiple cycles of catalytic reactions with no significant loss of catalytic activity.


Asunto(s)
Cromatografía de Afinidad , Nanopartículas de Magnetita/química , Proteínas Recombinantes/aislamiento & purificación , beta-Galactosidasa/metabolismo , Bacillus subtilis/enzimología , Quitosano/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Óxido Ferrosoférrico/química , Histidina/química , Histidina/genética , Histidina/metabolismo , Iminoácidos/química , Microscopía Electrónica de Transmisión , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Tamaño de la Partícula , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Espectroscopía Infrarroja por Transformada de Fourier , beta-Galactosidasa/química , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA