Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39161974

RESUMEN

Inhibitors of kinases involved in signaling and other intracellular pathways, have revolutionized cancer treatment by providing highly targeted and effective therapies. However, timely monitoring treatment response remains a considerable challenge since conventional methods such as assessing changes in tumor volume do not adequately capture early responses or resistance development, due to the predominantly cytostatic rather than cytotoxic effect of kinase inhibitors. Magnetic resonance spectroscopy (MRS) is a non-invasive imaging technique that can provide insights into cellular metabolism by detecting changes in metabolite concentrations. By measuring metabolite levels, MRS offers a means to assess treatment response in real-time, providing earlier indications of efficacy or resistance compared to conventional imaging modalities. Bruton's Tyrosine Kinase (BTK) is a critical enzyme involved in B-cell receptor signaling. BTK inhibitors have been approved for the treatment of Mantle Cell Lymphoma (MCL) and other B-cell malignancies. Recent studies involving genome-scale gene expression, metabolomic, and fluxomic analyses have demonstrated that ibrutinib, an index BTK inhibitor, profoundly affects the key metabolic pathways in MCL cells., including glycolysis, glutaminolysis, pentose shunt, TCA cycle and phospholipid metabolism. Importantly, the effects of ibrutinib on MCL cells directly and proportionately correlates with their sensitivity to the drug. Consequently, changes in specific metabolite concentrations detectable non-invasively by MRS such as lactate and alanine reflecting mostly the status of cellular glycolysis and glutaminolysis, respectively, have emerged as potential biomarkers for predicting response and resistance of MCL cells to BTK inhibition, both in vitro and in vivo. Preparations to validate the utility of these biomarkers in clinical setting are under way. These studies may pave the way to monitor therapeutic response to kinase inhibitors also in other types of cancer.

2.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965536

RESUMEN

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Linfoma de Células del Manto , Inhibidores de Proteínas Quinasas , Humanos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Animales , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Biomarcadores/metabolismo
3.
Front Oncol ; 14: 1383741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638855

RESUMEN

While normal B- and T-lymphocytes require antigenic ligands to become activated via their B- and T-cell receptors (BCR and TCR, respectively), B- and T-cell lymphomas show the broad spectrum of cell activation mechanisms regarding their dependence on BCR or TCR signaling, including loss of such dependence. These mechanisms are generally better understood and characterized for B-cell than for T-cell lymphomas. While some lymphomas, particularly the indolent, low-grade ones remain antigen-driven, other retain dependence on activation of their antigen receptors seemingly in an antigen-independent manner with activating mutations of the receptors playing a role. A large group of lymphomas, however, displays complete antigen receptor independence, which can develop gradually, in a stepwise manner or abruptly, through involvement of powerful oncogenes. Whereas some of the lymphomas undergo activating mutations of genes encoding proteins involved in signaling cascades downstream of the antigen-receptors, others employ activation mechanisms capable of substituting for these BCR- or TCR-dependent signaling pathways, including reliance on signaling pathways physiologically activated by cytokines. Finally, lymphomas can develop cell-lineage infidelity and in the extreme cases drastically rewire their cell activation mechanisms and engage receptors and signaling pathways physiologically active in hematopoietic stem cells or non-lymphoid cells. Such profound reprograming may involve partial cell dedifferentiation or transdifferentiation towards histocytes, dendritic, or mesodermal cells with various degree of cell maturation along these lineages. In this review, we elaborate on these diverse pathogenic mechanisms underlying cell plasticity and signaling reprogramming as well as discuss the related diagnostic and therapeutic implications and challenges.

4.
Urology ; 184: 79-82, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38128834

RESUMEN

Metachronous oligometastatic clear cell renal cell carcinoma may take many years before becoming clinically apparent. Herein we report regional lymph node recurrence of clear cell renal cell carcinoma more than two decades following radical nephrectomy. Chromosomal microarray analysis demonstrated multiple chromosomal alterations, including 3pq deletion shared by the original and recurrent tumors, and 17p deletion containing the TP53 gene present only in the latter. Sequencing of 1550 genes revealed mutations of VHL in both the primary and metastasis and BAP1 only in the metastatic lesion. These findings genetically link the original and recurrent tumors and suggest that VHL, TP53, and BAP1 alterations played an evolutionary role in recurrence decades after initial resection.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/cirugía , Genómica , Nefrectomía , Neoplasias Renales/genética , Neoplasias Renales/cirugía , Evolución Molecular
5.
Leukemia ; 37(12): 2436-2447, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37773266

RESUMEN

As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Proteínas Tirosina Quinasas Receptoras , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasa de Linfoma Anaplásico/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Transducción de Señal , Proteínas Nucleares/genética , Línea Celular Tumoral
6.
Artículo en Inglés | MEDLINE | ID: mdl-37730436

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.


Asunto(s)
Compuestos de Anilina , Linfoma de Células B Grandes Difuso , Recurrencia Local de Neoplasia , Piperidinas , Humanos , Rituximab , Genómica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología
7.
Mol Cancer Res ; 21(10): 1017-1022, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37358557

RESUMEN

DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS: In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.


Asunto(s)
Leucemia , Mutaciones Letales Sintéticas , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Recombinación Homóloga , Leucemia/genética , Reparación del ADN , Proteína Recombinante y Reparadora de ADN Rad52/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , ADN Polimerasa theta
9.
Am J Clin Pathol ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37167533

RESUMEN

OBJECTIVES: Sessions 8 and 9 of the 2021 Society for Hematopathology and the European Association for Haematopathology Workshop aimed to collect examples of transdifferentiation, lineage infidelity, progression, and transformation in precursor and mature T/natural killer (NK)-cell neoplasms. METHODS: Twenty-eight cases were submitted and analyzed, with whole-exome sequencing and genome-wide RNA expression analysis performed in a subset of the cases. RESULTS: In session 8, 7 T-lymphoblastic lymphoma/leukemia cases were received that showed transdifferentiation to clonally related mature myeloid hematopoietic neoplasms, including 6 histiocytic/dendritic cell lineage neoplasms and a mast cell sarcoma. Session 9 included 21 mature T-cell neoplasms that were grouped into 3 themes. The first one addressed phenotypic infidelity in mature T-cell lymphomas (TCLs) and included 8 TCLs expressing aberrant antigens, mimicking classic Hodgkin and non-Hodgkin B-cell lymphomas. The second theme addressed disease progression in TCL and included 5 cutaneous T-cell lymphoproliferative disorders and 2 T-cell large granular lymphocyte proliferations with subsequent progression to systemic TCL. The third theme included 6 patients with TCL with T-follicular helper phenotype, mainly angioimmunoblastic T-cell lymphoma, with concurrent/subsequent clonal hematopoiesis or myeloid neoplasms and/or subsequent/concomitant diffuse large B-cell lymphoma. CONCLUSIONS: This cohort of cases allowed us to illustrate, discuss, and review current concepts of transdifferentiation, aberrant antigen expression, and progression in various T/NK-cell neoplasms.

10.
Am J Clin Pathol ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37167543

RESUMEN

OBJECTIVES: The 2021 Society for Hematopathology and European Association for Haematopathology Workshop addressed the molecular and cytogenetic underpinnings of transformation and transdifferentiation in lymphoid neoplasms. METHODS: Session 4, "Transformations of Follicular Lymphoma," and session 5, "Transformations of Other B-Cell Lymphomas," included 45 cases. Gene alteration analysis and expression profiling were performed on cases with submitted formalin-fixed, paraffin embedded tissue. RESULTS: The findings from session 4 suggest that "diffuse large B-cell lymphoma/high-grade B-cell lymphoma with rearrangements of MYC and BCL2" is a distinct category arising from the constraints of a preexisting BCL2 translocation. TdT expression in aggressive B-cell lymphomas is associated with MYC rearrangements, immunophenotypic immaturity, and a dismal prognosis but must be differentiated from lymphoblastic -lymphoma. Cases in session 5 illustrated unusual morphologic and immunophenotypic patterns of transformation. Additionally, the findings support the role of cytogenetic abnormalities-specifically, MYC and NOTCH1 rearrangements-as well as single gene alterations, including TP53, in transformation. CONCLUSIONS: Together, these unique cases and their accompanying molecular and cytogenetic data suggest potential mechanisms for and unusual patterns of transformation in B-cell lymphomas and indicate numerous opportunities for further study.

11.
Am J Clin Pathol ; 159(6): 598-613, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37085150

RESUMEN

OBJECTIVES: To summarize cases submitted to the 2021 Society for Hematopathology/European Association for Haematopathology Workshop under the categories of progression of Hodgkin lymphoma, plasmablastic myeloma, and plasma cell myeloma. METHODS: The workshop panel reviewed 20 cases covered in this session. In addition, whole-exome sequencing (WES) and whole-genome RNA expression analysis were performed on 10 submitted cases, including 6 Hodgkin lymphoma and 4 plasma neoplasm cases. RESULTS: The cases of Hodgkin lymphoma included transformed cases to or from various types of B-cell lymphoma with 1 exception, which had T-cell differentiation. The cases of plasma cell neoplasms included cases with plasmablastic progression, progression to plasma cell leukemia, and secondary B-lymphoblastic leukemia. Gene variants identified by WES included some known to be recurrent in Hodgkin lymphoma and plasma cell neoplasm. All submitted Hodgkin lymphoma samples showed 1 or more of these mutations: SOCS1, FGFR2, KMT2D, RIT1, SPEN, STAT6, TET2, TNFAIP3, and ZNF217. CONCLUSIONS: Better molecular characterization of both of these neoplasms and mechanisms of progression will help us to better understand mechanisms of progression and perhaps develop better prognostic models, as well as identifying novel therapeutic targets.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B , Mieloma Múltiple , Neoplasias de Células Plasmáticas , Humanos , Mieloma Múltiple/patología , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Neoplasias de Células Plasmáticas/patología , Linfoma de Células B/patología , Células Plasmáticas/patología
12.
NMR Biomed ; 36(4): e4716, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196744

RESUMEN

Bonded cumomers are sets of isotopomers of 13 C-labeled metabolites containing a particular sequence of contiguously or singly labeled carbon atoms. Only these isotopomers contribute to multiplet structure in the 13 C NMR spectrum. We discuss the application of this technique to the study of quantitative tumor metabolism, bioenergetics, and the Warburg effect. The advantages and sensitivity of bonded cumomer analysis over positional enrichment analysis are discussed. When sensitivity requirements are met, bonded cumomer analysis enables the extraction of fluxes through specific metabolic pathways with higher precision. In conjunction with isotopomer control analysis, we evaluate the sensitivity of experimentally measurable metabolite multiplets to determine the robustness of flux analysis in 13 C spectra of tumors. This review examines the role of glycolytic and tricarboxylic acid cycle metabolism with special emphasis on flux through the pentose phosphate pathway (PPP). The impact of reversibility of the nonoxidative branch of the PPP with various 13 C glucose tracers on fine-structure multiplets is analyzed.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolismo Energético , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Isótopos de Carbono/metabolismo
13.
Cytopathology ; 34(1): 28-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36062384

RESUMEN

OBJECTIVE: Targeted therapy is an important part of the treatment of lung adenocarcinoma. Tests for EGFR mutation, ALK, ROS1, RET and NTRK gene fusions are needed to make a treatment decision. These gene fusions are traditionally detected by fluorescence in situ hybridisation (FISH) or immunohistochemistry. In this study, we investigated whether gene fusions in pulmonary adenocarcinoma could be accurately detected by RNA next-generation sequencing (RNA-NGS) and whether cytology cell blocks could be used effectively for this test. METHODS: Archived cytological specimens of lung adenocarcinoma submitted for RNA sequencing between 2019 and 2022 at Fox Chase Cancer Center were retrospectively retrieved. Hybrid capture-based targeted RNA next generation sequencing was used, which covers 507 fusion genes, including ALK, ROS1, RET and NTRKs, irrespective of their partner genes. DNA NGS, FISH and chromosomal microarray analysis were used to confirm the results of the RNA-NGS. RESULTS: A total of 129 lung adenocarcinoma cytology specimens were submitted for molecular testing. Eight of 129 (6.2%) cases were excluded from RNA sequencing as their cell blocks contained inadequate numbers of tumour cells. One case (0.8%) failed to yield adequate RNA. The overall success rate was 93% (120/129). Ten of 120 (8.3%) cytology cases were positive for gene fusions, including 7 ALK, 2 ROS1 fusion genes, and 1 RET fusion gene. Twenty-two cell block cases were also tested for ALK fusion genes using FISH. However, 11 of 22 (50%) failed the testing due to inadequate material. CONCLUSIONS: Cytology cell blocks can be used as the main source of material for molecular testing for lung cancer. Detection of gene fusions by RNA-based NGS on cell blocks is convenient and reliable in daily practice.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Quinasa de Linfoma Anaplásico/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/genética , ARN , Estudios Retrospectivos , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Proteínas Proto-Oncogénicas/genética , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Fusión Génica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Fusión Oncogénica/genética
14.
Am J Pathol ; 192(8): 1186-1198, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640677

RESUMEN

This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.


Asunto(s)
Quinasa de Linfoma Anaplásico , Proteínas Portadoras , Linfoma de Células T , Factor de Transcripción HES-1 , Quinasa de Linfoma Anaplásico/genética , Carcinogénesis/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Oncogenes , Fosforilación , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
15.
Blood Cancer J ; 11(2): 39, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602908

RESUMEN

Ibrutinib inhibits Bruton tyrosine kinase while venetoclax is a specific inhibitor of the anti-apoptotic protein BCL2. Both drugs are highly effective as monotherapy against chronic lymphocytic leukemia (CLL), and clinical trials using the combination therapy have produced remarkable results in terms of rate of complete remission and frequency of undetectable minimal residual disease. However, the laboratory rationale behind the success of the drug combination is still lacking. A better understanding of how these two drugs synergize would eventually help develop other rational combination strategies. Using an ex vivo model that promotes CLL proliferation, we show that modeled ibrutinib proliferative responses, but not viability responses, correlate well with patients' actual clinical responses. Importantly, we demonstrate for the first time that ibrutinib and venetoclax act on distinct CLL subpopulations that have different proliferative capacities. While the dividing subpopulation of CLL responds to ibrutinib, the resting subpopulation preferentially responds to venetoclax. The combination of these targeted therapies effectively reduced both the resting and dividing subpopulations in most cases. Our laboratory findings help explain several clinical observations and contribute to the understanding of tumor dynamics. Additionally, our proliferation model may be used to identify novel drug combinations with the potential of eradicating residual disease.


Asunto(s)
Adenina/análogos & derivados , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Neoplasia Residual/tratamiento farmacológico , Piperidinas/farmacología , Sulfonamidas/farmacología , Adenina/farmacología , Adulto , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Neoplasia Residual/patología , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
16.
Cancer Res ; 81(12): 3241-3254, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33619116

RESUMEN

Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.


Asunto(s)
Desdiferenciación Celular , Transformación Celular Neoplásica/patología , Reprogramación Celular , Linfoma Anaplásico de Células Grandes/patología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Apoptosis , Proliferación Celular , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/inmunología , Linfoma Anaplásico de Células Grandes/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/genética , Receptores de Antígenos de Linfocitos T/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Células Tumorales Cultivadas
17.
Cancer Immunol Immunother ; 70(3): 869-874, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32857184

RESUMEN

Given the poor prognosis of MYC-overexpressing diffuse large B cell lymphoma (DLBCL) and B cell lymphoma unclassifiable with features intermediate between DLBCL and Burkitt lymphoma/high grade B cell lymphoma (BCLU/HGBL), and preclinical data suggesting that MYC may regulate the antitumor immune response, we sought to characterize expression of immune checkpoint proteins on tumor tissue from patients diagnosed with these lymphomas. Immunohistochemical staining for immune checkpoint protein expression was applied to 56 cases of MYC-overexpressing DLBCL and BCLU/HGBL, 35 of which also harbored MYC rearrangement (MYC-R). Analysis revealed both frequent overexpression of immune checkpoint proteins as well as differences in overexpression patterns based upon MYC-R status, with MYC-R cases more likely to overexpress PD-L1 and PD-1 in the tumor microenvironment (50 vs. 15%, p = 0.02 and 32 vs. 5%, p = 0.02, respectively) but less likely to overexpress CTLA-4 and CD80 on tumor cells (34 vs. 71%, p = 0.01 and 34 vs. 81%, p = 0.001, respectively), as compared to cases without MYC-R. These data may suggest a biologic rationale for investigation of the effect of checkpoint inhibitor therapies in these subgroups of MYC-overexpressing DLBCL and BCLU/HGBL.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Genes myc , Proteínas de Punto de Control Inmunitario/genética , Linfoma de Células B/genética , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Doxorrubicina/efectos adversos , Doxorrubicina/uso terapéutico , Femenino , Humanos , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/mortalidad , Linfoma de Células B/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Prednisona/efectos adversos , Prednisona/uso terapéutico , Pronóstico , Recurrencia , Rituximab/efectos adversos , Rituximab/uso terapéutico , Análisis de Supervivencia , Resultado del Tratamiento , Vincristina/efectos adversos , Vincristina/uso terapéutico
18.
Cell Rep ; 33(1): 108221, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027668

RESUMEN

Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFßR) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-ß1). Genetic and/or pharmacological targeting of the TGF-ß1-TGFßR kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFßR inhibitor in patients receiving PARPis.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína smad3/metabolismo , Animales , Humanos , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Microambiente Tumoral
19.
Blood ; 136(17): 1980-1983, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32518951
20.
Heliyon ; 6(5): e03910, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32420483

RESUMEN

A fundamental feature of tumor progression is reprogramming of metabolic pathways. ATP citrate lyase (ACLY) is a key metabolic enzyme that catalyzes the generation of Acetyl-CoA and is upregulated in cancer cells and required for their growth. The phosphoinositide 3-kinase (PI3K) and Src-family kinase (SFK) Lyn are constitutively activate in many cancers. We show here, for the first time, that both the substrate and product of PI3K, phosphatidylinositol-(4,5)-bisphosphate (PIP2) and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), respectively, bind to ACLY in Acute Myeloid Leukemia (AML) patient-derived, but not normal donor-derived cells. We demonstrate the binding of PIP2 to the CoA-binding domain of ACLY and identify the six tyrosine residues of ACLY that are phosphorylated by Lyn. Three of them (Y682, Y252, Y227) can be also phosphorylated by Src and they are located in catalytic, citrate binding and ATP binding domains, respectively. PI3K and Lyn inhibitors reduce the ACLY enzyme activity, ACLY-mediated Acetyl-CoA synthesis, phospholipid synthesis, histone acetylation and cell growth. Thus, PIP2/PIP3 binding and Src tyrosine kinases-mediated stimulation of ACLY links oncogenic pathways to Acetyl-CoA-dependent pro-growth and survival metabolic pathways in cancer cells. These results indicate a novel function for Lyn, as a regulator of Acetyl-CoA-mediated metabolic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA