Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Methods Enzymol ; 706: 125-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39455213

RESUMEN

Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.


Asunto(s)
Cisteína , Disulfuros , Mitocondrias , Proteínas Mitocondriales , Oxidación-Reducción , Disulfuros/química , Disulfuros/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Cisteína/metabolismo , Cisteína/química , Animales , Humanos , Transporte de Proteínas
3.
Nat Commun ; 14(1): 4092, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433777

RESUMEN

Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.


Asunto(s)
Cisteína Endopeptidasas , Complejo de la Endopetidasa Proteasomal , Proteostasis , Humanos , Citoplasma , Mitocondrias , Factor 1 de Elongación Peptídica , Cisteína Endopeptidasas/metabolismo
5.
Nat Metab ; 3(9): 1146-1147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504354
6.
J Mol Biol ; 432(24): 166713, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33197464

RESUMEN

Mitochondria are essential cellular organelles that import the majority of proteins to sustain their function in cellular metabolism and homeostasis. Due to their role in oxidative phosphorylation, mitochondria are constantly affected by oxidative stress. Stability of mitochondrial DNA (mtDNA) is essential for mitochondrial physiology and cellular well-being and for this reason mtDNA lesions have to be rapidly recognized and repaired. Base excision repair (BER) is the main pathway responsible for repairing non-helix distorting base lesions both into the nucleus and in mitochondria. Apurinic/Apyrimidinic Endonuclease 1 (APE1) is a key component of BER pathway and the only protein that can recognize and process an abasic (AP) site. Comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary. In this study we focused our attention on the mitochondrial form of APE1 protein and how oxidative stress induces its translocation to maintain mtDNA integrity. Our data proved that: (i) the rise of mitochondrial ROS determines a very rapid translocation of APE1 from the intermembrane space (IMS) into the matrix; and (ii) TIM23/PAM machinery complex is responsible for the matrix translocation of APE1. Moreover, our data support the hypothesis that the IMS, where the majority of APE1 resides, could represent a sort of storage site for the protein.


Asunto(s)
Amidina-Liasas/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Oxigenasas de Función Mixta/genética , Daño del ADN/genética , Reparación del ADN/genética , ADN Mitocondrial/genética , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/genética , Fosforilación Oxidativa , Estrés Oxidativo/genética , Transporte de Proteínas/genética
7.
EMBO Rep ; 21(8): e48882, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32558077

RESUMEN

Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteómica , Sinapsis
8.
J Mol Biol ; 432(7): 2067-2079, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32061935

RESUMEN

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cobre/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Compuestos de Sulfhidrilo/química , Proteínas Portadoras/genética , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Células HEK293 , Humanos , Metalochaperonas , Mitocondrias/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación , Transporte de Proteínas
9.
EMBO Mol Med ; 11(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30885959

RESUMEN

Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Mutación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Disulfuros/metabolismo , Transporte de Electrón/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mutantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ubiquitina/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 125-137, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27810356

RESUMEN

Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.


Asunto(s)
Núcleo Celular/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Biogénesis de Organelos , Movimiento Celular , Regulación de la Expresión Génica , Homeostasis , Humanos , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Transducción de Señal
11.
Postepy Biochem ; 62(2): 94-102, 2016.
Artículo en Polaco | MEDLINE | ID: mdl-28132460

RESUMEN

Mitochondria participate in plethora of vital processes in the cell such as energy production, other biochemical pathways and signaling. Over a thousand proteins co-operate to form the proteome of mitochondria. A great majority of mitochondrial precursor proteins are encoded in nuclear DNA and produced in the cytosol. They are targeted to mitochondria and sorted to distinct sub-compartments of mitochondria with the help of specialized translocase machineries. Biogenesis of mitochondrial proteins is completed through precursor maturation events and complex assembly. Mitochondrial homeostasis also requires the presence of clearance mechanisms for degradation of non-functional proteins. In the present review, we summarize the most important aspects of mitochondrial protein biogenesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Eucariontes/metabolismo , Humanos , Transporte de Proteínas , Proteolisis
12.
Proc Natl Acad Sci U S A ; 112(25): 7713-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056291

RESUMEN

The content of mitochondrial proteome is maintained through two highly dynamic processes, the influx of newly synthesized proteins from the cytosol and the protein degradation. Mitochondrial proteins are targeted to the intermembrane space by the mitochondrial intermembrane space assembly pathway that couples their import and oxidative folding. The folding trap was proposed to be a driving mechanism for the mitochondrial accumulation of these proteins. Whether the reverse movement of unfolded proteins to the cytosol occurs across the intact outer membrane is unknown. We found that reduced, conformationally destabilized proteins are released from mitochondria in a size-limited manner. We identified the general import pore protein Tom40 as an escape gate. We propose that the mitochondrial proteome is not only regulated by the import and degradation of proteins but also by their retro-translocation to the external cytosolic location. Thus, protein release is a mechanism that contributes to the mitochondrial proteome surveillance.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/química , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
13.
Nucleic Acids Res ; 43(11): 5451-64, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25956655

RESUMEN

APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Línea Celular Tumoral , Cisteína/química , Daño del ADN , Reparación del ADN , ADN Mitocondrial/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Disulfuros/química , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Estabilidad Proteica , Transporte de Proteínas
14.
FEBS Lett ; 588(15): 2484-95, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24866464

RESUMEN

Mitochondria are involved in many essential cellular activities. These broad functions explicate the need for the well-orchestrated biogenesis of mitochondrial proteins to avoid death and pathological consequences, both in unicellular and more complex organisms. Yeast as a model organism has been pivotal in identifying components and mechanisms that drive the transport and sorting of nuclear-encoded mitochondrial proteins. The machinery components that are involved in the import of mitochondrial proteins are generally evolutionarily conserved within the eukaryotic kingdom. However, topological and functional differences have been observed. We review the similarities and differences in mitochondrial translocases from yeast to human. Additionally, we provide a systematic overview of the contribution of mitochondrial import machineries to human pathologies, including cancer, mitochondrial diseases, and neurodegeneration.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades Neurodegenerativas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Acta Theriol (Warsz) ; 57(4): 305-312, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23002287

RESUMEN

We describe the results of our research on population dynamics among brown hares reared in enclosures and then released into suitable natural habitat. Radio-tracking was used to follow the fate of 60 released brown hares over a 4-year period, extending between November 2005 and November 2009. The survival rate among these animals after 12 months was estimated to be 37 %, with 22 tagged individuals surviving beyond 1 year post-release. The highest (40 %) level of mortality characterised the first month after release, while a second period of enhanced mortality coincided with the breeding season (altogether accounting for a 20 % mortality rate). There was no significant relationship between body mass and mortality rate in the first month following release. A natural cause of death was predation by mammals, which accounted for some 31 % of all losses. Remaining causes were poaching (13 %), hits by vehicles (7 %) and unidentified causes (9 %). However, in at least 40 % of cases, it was not possible to determine the date when a released animal died, to say nothing of the cause of death.

16.
Hum Mol Genet ; 21(17): 3858-70, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22678058

RESUMEN

The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.


Asunto(s)
Proteasas ATP-Dependientes/deficiencia , Proteasas ATP-Dependientes/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Respiración de la Célula , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , GTP Fosfohidrolasas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Modelos Biológicos
17.
Curr Biol ; 22(13): 1228-34, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22658590

RESUMEN

During human pregnancy, placental trophoblasts differentiate and syncytialize into syncytiotrophoblasts that sustain progesterone production [1]. This process is accompanied by mitochondrial fragmentation and cristae remodeling [2], two facets of mitochondrial apoptosis, whose molecular mechanisms and functional consequences on steroidogenesis are unclear. Here we show that the mitochondria-shaping protein Optic atrophy 1 (Opa1) controls efficiency of steroidogenesis. During syncytialization of trophoblast BeWo cells, levels of the profission mitochondria-shaping protein Drp1 increase, and those of Opa1 and mitofusin (Mfn) decrease, leading to mitochondrial fragmentation and cristae remodeling. Manipulation of the levels of Opa1 reveal an inverse relationship with the efficiency of steroidogenesis in trophoblasts and in mouse embryonic fibroblasts where the mitochondrial steroidogenetic pathway has been engineered. In an in vitro assay, accumulation of cholesterol is facilitated in the inner membrane of isolated mitochondria lacking Opa1. Thus, Opa1-dependent inner membrane remodeling controls efficiency of steroidogenesis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Animales , Línea Celular , Colesterol/metabolismo , Dinaminas , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Pregnenolona/biosíntesis
18.
Trends Endocrinol Metab ; 20(6): 287-94, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19647447

RESUMEN

Mitochondria are key organelles in conversion of energy, regulation of cellular signaling and amplification of programmed cell death. The anatomy of the organelle matches this functional versatility in complexity and is modulated by the concerted action of proteins that impinge on its fusion-fission equilibrium. A growing body of evidence implicates changes in mitochondrial shape in the progression of apoptosis and, therefore, proteins governing such changes are likely candidates for involvement in pathogenetic mechanisms in neurodegeneration and cancer. Here, we discuss the recent advancements in our knowledge about the machinery that regulates mitochondrial shape and on the role of molecular mechanisms controlling mitochondrial morphology during cell death.


Asunto(s)
Apoptosis/fisiología , Mitocondrias/fisiología , Tamaño Mitocondrial/fisiología , Forma de los Orgánulos/fisiología , Animales , Humanos , Fusión de Membrana , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Membranas Mitocondriales , Proteínas Mitocondriales/fisiología
19.
Biochem Biophys Res Commun ; 348(2): 393-9, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16887100

RESUMEN

The adenine nucleotide translocase (ANT), besides transferring ATP from the mitochondrial matrix to the rest of the cell, has also been proposed to be involved in mitochondrial permeability transition (MPT), and accordingly in mitochondrial Ca2+ homeostasis. In order to assess the role of ANT in Ca2+ signal transmission from the endoplasmic reticulum (ER) to mitochondria, we overexpressed the various ANT isoforms and measured the matrix [Ca2+] ([Ca2+]m) increases evoked by stimulation with IP3-dependent agonists. ANT overexpression reduced the amplitude of the [Ca2+]m peak following Ca2+ release, an effect that was markedly greater for ANT-1 and ANT-3 isoforms than for ANT-2. Three further observations might explain these findings. First, the effect was partially reversed by treating the cells with cyclosporine A, suggesting the involvement of MPT. Second, the effect was paralleled by alterations of the 3D structure of the mitochondria. Finally, ANT-1 and ANT-3 overexpression also caused a reduction of ER Ca2+ loading that caused a marginal decrease in the cytosolic Ca2+ responses. Overall, these data provide evidence for the involvement of ANT-1 and ANT-3 in the induction of MPT and indicate the relevance of this phenomenon in ER-mitochondria Ca2+ transfer.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Retículo Endoplásmico/fisiología , Mitocondrias/fisiología , Translocasas Mitocondriales de ADP y ATP/biosíntesis , Translocador 1 del Nucleótido Adenina/biosíntesis , Translocador 3 del Nucleótido Adenina/biosíntesis , Calcio/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Regulación hacia Arriba
20.
FEBS Lett ; 579(21): 4724-8, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16099457

RESUMEN

Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.


Asunto(s)
Transporte de Electrón/fisiología , Inhibidores Enzimáticos/metabolismo , Etanolaminas/metabolismo , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Inhibidores Enzimáticos/química , Etanolaminas/química , Oxidación-Reducción , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA