Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Sports Med ; : 3635465241271900, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207361

RESUMEN

BACKGROUND: Medial patellofemoral ligament reconstruction (MPFL-R) aims to restore proper ligament function with minimal changes in length during range of motion, yet the ideal area for femoral fixation of the graft remains controversial. PURPOSE: To determine the region where the isometric circular path of a simulated MPFL graft (best-fit circle) follows the sagittal radius curvature of the trochlea in normal (nontrochlear dysplastic) knees and to evaluate the best-fit circle coverage of different femoral fixation points in knees with severe trochlear dysplasia (TD) and after deepening trochleoplasty. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve patients (4 male, 8 female; mean age, 24 ± 8 years) who underwent surgical treatment for recurrent lateral patellar instability due to severe TD were prospectively enrolled in this study. Four previously defined reference points for the femoral MPFL-R (Schöttle, Fujino, Stephen, and Oka) were identified, and the best-fit circle was drawn along the sagittal trochlear groove curvature. The divergence between each best-fit circle and the trochlear groove was calculated, with negative values indicating relative slackening and positive values indicating relative tightening of the simulated MPFL graft. Measurements were made on true-lateral fluoroscopic images before and after deepening trochleoplasty and compared with those of a sex-matched control group. RESULTS: The best-fit circle of the Schöttle point followed the sagittal curvature of the trochlea most closely in both the control and trochlear dysplastic knees, followed by the Fujino, Stephen, and Oka points. As the radius of the trochlear groove curvature increased, the divergence of all best-fit circles to the trochlear groove became negative (all P < .05). This effect was most pronounced at the Stephen and Oka points, followed by the Fujino and Schöttle points (all P < .05). After deepening trochleoplasty, the divergence of the Schöttle point changed toward positive values (11.6% at 40°; P < .001). Concurrently, the best-fit circle divergence of all other reference points improved toward baseline (all P < .05). CONCLUSION: The isometric circle of the Schöttle point provides the best congruence with the sagittal trochlear groove curvature in both the normal trochlea and the dysplastic trochlea. After trochleoplasty, the best-fit circles of more distal femoral fixation points resulted in better congruence with the deepened trochlear groove, whereas the best-fit circle of Schöttle indicated graft tension during flexion. CLINICAL RELEVANCE: According to the present study, different femoral fixation points should be considered depending on whether the TD is corrected.

2.
Arch Orthop Trauma Surg ; 144(7): 3073-3081, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967778

RESUMEN

INTRODUCTION: The treatment option for borderline hip dysplasia (BHD) includes hip arthroscopy and periacetabular osteotomy (PAO). To the present day the controversial discussion remains, which intervention to prefer. Literature reports supporting an educated choice are scare, based on small patient cohorts and do not address the variability of acetabular morphology. Consequently, we intended to report PAO outcomes, from patients diagnosed with BHD, dependent on acetabular morphology, in a large patient cohort and aimed to define risk factors for poor clinical results and patient satisfaction. MATERIALS AND METHODS: A prospective monocentre study was conducted. Patients enrolled underwent PAO for symptomatic BHD (LCEA, 18°-25°). A total of 107 hips were included with 94 complete data sets were available for evaluation with a minimum follow-up of 1 year and a mean follow-up of 2.3 years. The mean age was 31 ± 8.2 years, and 81.3% were female. As the primary outcome measure, we utilized the modified Harris hip score (mHHS) with minimal clinically important change (MCID) of eight to define clinical failure. Results were compared after a comprehensive radiographic assessment distinguishing between lateral deficient vs. anterior/posterolateral deficient acetabular and stable vs. unstable hip joints. RESULTS: Overall, clinical success was achieved in 91.5% of patients and the mHHS improved significantly (52 vs. 84.7, p < 0.001). Eight hips failed to achieve the MCID and four had radiographic signs of overcorrection. Comparing variable joint morphologies, the rate of clinical success was higher in patients with an anterior/posterolateral deficient acetabular covarage compared to lateral deficient acetabular (95.2% vs. 90.4%). tThe highest rate of clinical failure was recorded in unstable hip joints (85.7% vs. 92.5% in stable hips). CONCLUSIONS: This study demonstrates that PAO is an effective means to treat symptomatic BHD with variable acetabular morphologies, achieving a clinical success in 91.5% of all patients. To maintain a high level of safety and patient satisfaction technical accuracy appears crucial.


Asunto(s)
Acetábulo , Osteotomía , Medición de Resultados Informados por el Paciente , Humanos , Osteotomía/métodos , Femenino , Acetábulo/cirugía , Acetábulo/diagnóstico por imagen , Masculino , Adulto , Estudios Prospectivos , Luxación de la Cadera/cirugía , Luxación de la Cadera/diagnóstico por imagen , Adulto Joven , Satisfacción del Paciente
3.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000064

RESUMEN

Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.


Asunto(s)
Apoptosis , Neoplasias Óseas , Proliferación Celular , Supervivencia Celular , Condrosarcoma , Doxorrubicina , Gases em Plasma , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/patología , Humanos , Gases em Plasma/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Antineoplásicos/farmacología , Cisplatino/farmacología , Vincristina/farmacología , Terapia Combinada
4.
Orthop J Sports Med ; 12(7): 23259671241255672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39070901

RESUMEN

Background: Symptomatic full-thickness cartilage lesions of the knee joint are considered an indication for cartilage repair surgery. Patient- and lesion-specific factors like age, nutritional status, etiology of defect, or integrity of corresponding joint surface remain controversial in indicating cartilage repair surgery. Furthermore, the selection of the most suitable cartilage repair technique for a specific cartilage lesion remains debatable. Purpose: To evaluate indications and choice of treatment method for cartilage repair surgery, depending on patient- and lesion-specific data from the German Cartilage Registry. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 6305 consecutive patients who underwent cartilage repair surgery of the knee evaluated and 5143 complete datasets were included in the analysis (follow-up rate, 81.5%). Patient-specific (age, body mass index, smoking status, previous operations, clinical leg axis) and lesion-specific (size, grading, location, etiology) data were provided by the attending surgeon at the time of surgery. Appropriate statistical tests were used to compare data depending on type and normality of data. Multivariable logistic regressions were calculated to investigate independent factors for the choice of specific cartilage repair techniques. Results: The median size of treated cartilage lesions was 3.6 cm2, and most defects were of degenerative origin (54.8%). Of the registered patients, 39.2% were categorized as overweight and 19.6% as obese, while 23.3% were smokers. The most prevalently documented operative techniques were the autologous chondrocyte implantation (ACI) (52.4%), bone marrow stimulation (BMS) (17.3%), and BMS augmented with collagen scaffolds (9.3%). Independent factors that made the use of ACI more likely were bigger lesion size, previous surgery at the joint, and lesions located at the trochlea or the patella. On the contrary, BMS or augmented BMS were preferred in older patients, with damaged corresponding joint surface, and with more concomitant surgeries. Conclusion: Cartilage repair surgery was indicated irrespective of nutritional status, smoking status, or etiology of the treated lesion. ACI was the most prevalent technique and was preferred for younger patients and patellar lesions. While older patients with degenerative changes to the joint were not excluded from cartilage repair surgery, the use of ACI was restricted.

5.
In Vivo ; 38(4): 1571-1578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936915

RESUMEN

BACKGROUND/AIM: Cold physical plasma (CPP) has emerged as an effective therapy in oncology by inducing cytotoxic effects in various cancer cells, including chondrosarcoma (CS), Ewing's sarcoma (ES), and osteosarcoma (OS). The current study investigated the impact of CPP on cell motility in CS (CAL-78), ES (A673), and OS (U2-OS) cell lines, focusing on the actin cytoskeleton. MATERIALS AND METHODS: The CASY Cell Counter and Analyzer was used to study cell proliferation and determine the optimal concentrations of fetal calf serum to maintain viability without stimulation of cell proliferation. CellTiter-BlueCell viability assay was used to determine the effects of CPP on the viability of bone sarcoma cells. The Radius assay was used to determine cell migration. Staining for Deoxyribonuclease I, G-actin, and F-actin was used to assay for the effects on the cytoskeleton. RESULTS: Reductions in cell viability and motility were observed across all cell lines following CPP treatment. CPP induced changes in the actin cytoskeleton, leading to decreased cell motility. CONCLUSION: CPP effectively reduces the motility of bone sarcoma cells by altering the actin cytoskeleton. These findings underscore CPP's potential as a therapeutic tool for bone sarcomas and highlight the need for further research in this area.


Asunto(s)
Citoesqueleto de Actina , Neoplasias Óseas , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Citoesqueleto , Gases em Plasma , Humanos , Movimiento Celular/efectos de los fármacos , Gases em Plasma/farmacología , Línea Celular Tumoral , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Osteosarcoma/patología , Osteosarcoma/metabolismo , Actinas/metabolismo , Sarcoma/patología , Sarcoma/metabolismo
6.
Infection ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819638

RESUMEN

PURPOSE: Periprosthetic joint infections (PJIs) are a very demanding complication of arthroplasty. Diagnosis of PJI and pathogen identification pose considerable challenges in clinical practice. We hypothesized that the pathogen-specific immune response to PJI reflects the infection process, provides clinically relevant information on disease course, and has the potential to further optimize antimicrobial therapy. METHODS: We conducted a prospective matched cohort pilot study with 13 patients undergoing two-stage septic revision arthroplasty (PJI patients) between 06/2020 and 06/2021, as well as 11 control patients undergoing one-stage aseptic revision arthroplasty (Non-PJI patients). Pre-, intra- and postoperative serum samples were collected at standardized time points. We developed a custom Luminex®-based quantitative bead-based suspension array (Infection Array; IA), and used it for simultaneous measurement of antibody specificities against 32 pathogens commonly associated with PJI in 267 serum samples. RESULTS: The IA was able to trace the dynamics of the pathogen-specific humoral immune response in all patients against PJI-related pathogens, prominently coagulase-negative staphylococci and streptococci. Pathogen-specific serum antibody titers declined in 62% of PJI patients over the course of treatment, while no changes in antibody titers were observed in 82% of Non-PJI patients during this study. Our serological data strongly suggested that antibody signatures reflect an immune response to microbial invasion. CONCLUSION: Our results provide insights into the pathophysiology of PJI and information on the individual disease courses. The IA is therefore a promising and novel serological tool of high resolution for monitoring the immunoproteomic footprints of infectious pathogens in the course of PJI.

7.
Bone Joint J ; 106-B(5 Supple B): 54-58, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688499

RESUMEN

Aims: The use of a porous metal shell supported by two augments with the 'footing' technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. Methods: We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the 'footing' technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0). Results: The cumulative medium-term survival of the acetabular construct was 89%. Two hips (5.1%) required further revision due to shell loosening, one hip (2.6%) due to shell dislocation, and one hip (2.6%) due to infection. The median Harris Hip Score improved significantly from 47 points (IQR 41.5 to 54.9) preoperatively to 80 points (IQR 73.5 to 88.6) at the latest follow-up (p < 0.001). Conclusion: The reconstruction of Paprosky IIIB acetabular defects with porous tantalum shells and two augments using the 'footing' technique showed excellent medium-term results. It is a viable option for treating these challenging defects.


Asunto(s)
Acetábulo , Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Diseño de Prótesis , Falla de Prótesis , Reoperación , Tantalio , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Acetábulo/cirugía , Artroplastia de Reemplazo de Cadera/métodos , Artroplastia de Reemplazo de Cadera/instrumentación , Porosidad , Estudios Retrospectivos
8.
Heliyon ; 10(8): e29719, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681575

RESUMEN

The gadolinium-based contrast agent DOTA-Gd is clinically used in combination with local anesthetics for direct magnetic resonance arthrography. It remains unclear whether gadolinium uptake into cartilage is influenced by co-administration of bupivacaine or ropivacaine and whether DOTA-Gd alters their chondrotoxicity. Gadolinium quantification of chondrogenic spheroids revealed enhanced gadolinium uptake after simultaneous exposure to local anesthetics. Analyses of the spatial gadolinium distribution using synchrotron X-ray-fluorescence scanning indicates gadolinium exposed chondrocytes. In vitro exposure to DOTA-Gd does not alter viability and proliferation of human chondrocytes and the chondrotoxic potential of the anesthetics. Reduced viability induced by ropivacaine was found to be reversible, while exposure to bupivacaine leads to irreversible cell death. Our data suggest that ropivacaine is more tolerable than bupivacaine and that DOTA-Gd exposure does not alter the cytotoxicity of both anesthetics. Enhanced gadolinium uptake into cartilage due to co-administration of anesthetics should find attention.

9.
Front Surg ; 11: 1363298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476757

RESUMEN

This case-report focuses on a 23-year-old soldier suffering from a fracture-related hip joint infection (FRI) due to extensively drug-resistant Klebsiella pneumoniae and S. epidermidis. The patient underwent multiple septic revision surgeries including the removal of remaining shrapnel accompanied by last-resort antimicrobial therapy with cefiderocol and colistin. Additionally, the surgeries included repeated tissue sampling for microbiological and histopathological analysis. An antibiotic-loaded cemented filler containing cefiderocol was used to improve local antimicrobial therapy. The biopsies prior to and during hip replacement surgery confirmed successful microbe eradication. Hip arthroplasty restored hip joint function and significantly improved patient's quality of life. The utilization of a trabecular metal shell and a meta-diaphyseally anchored cementless hip stem ensured secure implant fixation and early patient mobilisation. An adjusted biofilm active oral antimicrobial therapy after arthroplasty intervention was continued to prevent early periprosthetic joint infection. This case emphasizes the difficulties of managing FRI and multidrug-resistant pathogens. It contributes valuable insight into navigating complex orthopedic cases while ensuring successful hip arthroplasty outcomes. In conclusion, early interdisciplinary collaboration, appropriate antimicrobial therapy along with tailored surgical interventions are crucial for managing such complex cases successfully.

10.
Sci Rep ; 14(1): 6505, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499701

RESUMEN

Ewing's sarcoma (ES) is the second most common bone tumor in children and adolescents and is highly malignant. Although the new chemotherapy has significantly improved the survival rate for ES from about 10 to 75%, the survival rate for metastatic tumors remains around 30%. This treatment is often associated with various side effects that contribute to the suffering of the patients. Cold physical plasma (CPP), whether used alone or in combination with current chemotherapy, is considered a promising adjunctive tool in cancer treatment. This study aims to investigate the synergistic effects of CPP in combination with cytostatic chemotherapeutic agents that are not part of current ES therapy. Two different ES cell lines, RD-ES and A673, were treated with the determined IC20 concentrations of the chemotherapeutic agents cisplatin and methotrexate (MTX) in combination with CPP. The effects on population doubling, cell viability, and apoptotic processes within these cell lines were assessed. This combination therapy has led to a reduction of population doubling and cell viability, as well as an increase in apoptotic activity in cells compared to CPP monotherapy. The results of this study provide evidence that combining CPP with non-common chemotherapy drugs such as MTX and CIS in the treatment of ES enhances the anticancer effects of these drugs. These findings open up new possibilities for the effective use of these drugs against ES.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Niño , Adolescente , Humanos , Sarcoma de Ewing/patología , Neoplasias Óseas/patología , Terapia Combinada , Apoptosis , Cisplatino/farmacología , Cisplatino/uso terapéutico
11.
ACS Biomater Sci Eng ; 10(1): 563-574, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38108141

RESUMEN

Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive. Synchrotron radiation X-ray microtomography and X-ray fluorescence mapping indicated that peri-implant tissues harvested during aseptic revision of different arthroplasty implants are exposed to Co and Cr in situ. Confocal laser scanning microscopy revealed that macrophage influx is predominant in patient tissue. While in vitro exposure to Cr3+ had only minor effects on monocytes/macrophage phenotype, pathologic concentrations of Co2+ significantly impaired both, monocyte/macrophage phenotype and functionality. High concentrations of Co2+ led to a shift in macrophage subsets and loss of surface markers, including CD14 and CD16. Both Co2+ and Cr3+ impaired macrophage responses to Staphylococcus aureus infection, and particularly, Co2+-exposed macrophages showed decreased phagocytic activity. These findings demonstrate the immunosuppressive effects of locally elevated metal ions on the innate immune response and support further investigations, including studies exploring whether Co2+ and Cr3+ or CoCrMo alloys per se expose the patients to a higher risk of infections post-revision arthroplasty.


Asunto(s)
Cobalto , Infecciones Estafilocócicas , Humanos , Cobalto/toxicidad , Cromo/toxicidad , Staphylococcus aureus , Macrófagos/patología , Iones/farmacología , Aleaciones , Infecciones Estafilocócicas/patología
12.
Stem Cell Res Ther ; 14(1): 315, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924114

RESUMEN

BACKGROUND: Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are used in regenerative medicine and related research involving immunomodulatory, anti-inflammatory, anti-fibrotic and regenerative functions. Isolation of BM-MSCs from samples obtained during total hip arthroplasty (THA) is routinely possible. Advanced age and comorbidities of the majority of patients undergoing THA limit their applicability. Our study aimed to evaluate the potential of bone marrow obtained during periacetabular osteotomy (PAO) as a novel source of BM-MSCs from young donors by analyzing cell yield and cell characteristics. METHODS: Bone samples were obtained from the anterior Os ilium or superior Os pubis during PAO and from the femoral cavity during primary THA. Isolation of bone marrow-derived mononuclear cells (BM-MNCs) was performed by density gradient centrifugation. The samples from PAO and THA patients were compared in terms of BM-MSC yield, colony formation and the proportion of BM-MSCs within the BM-MNC population using flow cytometry analysis. The cells were characterized based on the expression of BM-MSC-specific surface markers. The functionality of the cells was compared by quantifying post-thaw viability, metabolic activity, proliferation capacity, senescence-associated beta galactosidase (SA-ß-gal) expression, trilineage differentiation potential and major secretome proteins. RESULTS: Isolation of BM-MNCs was possible in a reliable and reproducible manner when using bone from PAO containing more than 0.24 g bone marrow. PAO patients were younger than patients of the THA group. Bone obtained during PAO contained less bone marrow and led to a lower BM-MSC number after the first cell culture passage compared to BM-MSCs obtained during THA. BM-MSCs from PAO samples are characterized by a higher proliferation capacity. This results in a higher yield in cell culture passage two, when normalized to the sample weight. BM-MSCs from PAO patients showed increased secretion of TGF-ß1, TIMP2, and VEGF upon osteogenic differentiation. BM-MSCs from PAO and THA patients revealed similar results regarding the onset of SA-ß-gal expression and trilineage differentiation capacity. CONCLUSIONS: We suggest that bone obtained during PAO is a promising novel source for BM-MSCs from young donors. Limited absolute cell yield due to low sample weight must be considered in early cell culture passages and might be critical for the range of clinical applications possible for BM-MSCs from this source. The higher proliferation capacity and increased growth factor secretion of BM-MSCs from young donors may be beneficial for future regenerative cell therapies, in vitro models, and tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Células Cultivadas , Médula Ósea , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Osteotomía , Células de la Médula Ósea , Proliferación Celular
13.
Front Bioeng Biotechnol ; 11: 1264409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026873

RESUMEN

In musculoskeletal surgery, the treatment of large bone defects is challenging and can require the use of bone graft substitutes to restore mechanical stability and promote host-mediated regeneration. The use of bone allografts is well-established in many bone regenerative procedures, but is associated with low rates of ingrowth due to pre-therapeutic graft processing. Cold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen (O2) and nitrogen (N2) species, is suggested to be advantageous in biomedical implant processing. CPP is a promising tool in allograft processing for improving surface characteristics of bone allografts towards enhanced cellularization and osteoconduction. However, a preclinical assessment regarding the feasibility of pre-therapeutic processing of allogeneic bone grafts with CPP has not yet been performed. Thus, this pilot study aimed to analyze the bone morphology of CPP processed allografts using synchrotron radiation-based microcomputed tomography (SR-µCT) and to analyze the effects of CPP processing on human bone cell viability and function. The analyzes, including co-registration of pre- and post-treatment SR-µCT scans, revealed that the main bone morphological properties (total volume, mineralized volume, surface area, and porosity) remained unaffected by CPP treatment if compared to allografts not treated with CPP. Varying effects on cellular metabolic activity and alkaline phosphatase activity were found in response to different gas mixtures and treatment durations employed for CPP application. It was found that 3 min CPP treatment using a He + 0.1% N2 gas mixture led to the most favourable outcome regarding a significant increase in bone cell viability and alkaline phosphatase activity. This study highlights the promising potential of pre-therapeuthic bone allograft processing by CPP prior to intraoperative application and emphasizes the need for gas source and treatment time optimization for specific applications.

14.
Sci Rep ; 13(1): 17351, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833272

RESUMEN

Judo is an Olympic sport, and the way of its performing can lead to repetitive blunt injuries on head and ears. The chronic consequences of such traumata on the auricle are the formation of so-called cauliflower ear. This condition is painful, can lead to interruptions in the training process and long-term consequences for the athlete's health. There is limited knowledge of epidemiological data about cauliflower ear deformities in judo. Evaluation of the prevalence of cauliflower ear among judokas based on their profile pictures on the international judo federation was performed. A large cohort of judo athletes from around the world was studied. Two different classifications for the severity of ear deformities were used. Statistical calculations of the collected data and correlations to different parameters were performed. Images of 1632 top athletes were evaluated in the study. Ear deformities were found in 55.5% of the judokas. There was gender-specific differences. Male athletes were affected much more often than female athletes. In addition, ear deformities were more pronounced in male athletes. A correlation was found between the age of the athletes and the presence of an ear deformity. It has also been shown that judokas with a high world ranking are more likely to have an ear deformity. Ear deformities are a common consequence of injury among leading judo athletes. The current study represents the largest and high heterogeny cohort ever conducted on the prevalence of cauliflower ear in judoka. Knowledge of the prevalence of cauliflower ear in judoka based on reliable data from this study, may be important prerequisites for further studies on the impact of this traumatic consequence on training preparation and judoka health.


Asunto(s)
Artes Marciales , Humanos , Masculino , Femenino , Prevalencia , Artes Marciales/lesiones , Oído Externo , Factores Sexuales , Atletas
15.
Cartilage ; 14(4): 393-399, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37533396

RESUMEN

OBJECTIVE: The objective was to evaluate clinical outcome and safety of arthroscopic, autologous minced cartilage implantation for acetabular cartilage lesions observed during hip arthroscopy to treat femoroacetabular impingement syndrome (FAIS). DESIGN: Eleven male patients, average age: 29.4 ± 5.4 years, average body mass index (BMI): 24.2 ± 2.2 kg/m2, scheduled for hip arthroscopy due to FAIS accompanied by an acetabular cartilage lesion were included in the case series. Cartilage tissue was harvested and minced from the loose cartilage flap at the chondrolabral lesion by arthroscopic shaver, augmented with autologous conditioned plasma, implanted into the defect, and fixated by autologous thrombin. Concomitant interventions were performed as indicated. The patients were evaluated preoperatively and at 24-month follow-up, using the International Hip Outcome Tool-12 (iHOT-12) and Visual Analog Scale (VAS) pain score and by magnetic resonance imaging (MRI) using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) grading scale at the 2-year follow-up. RESULTS: The defect size was on average 3.5 cm2 (1.5-4.5 cm2). From preoperatively to 2 years postoperatively, the iHOT-12 significantly improved from 50.2 ± 18 to 86.5 ± 19 (P < 0.0001), and pain score decreased from 5.6 ± 1.8 to 1.0 ± 1.5 (P < 0.0001) on the Visual Analog Scale pain score. Regarding functional outcome and pain, 10 of the 11 patients and all patients reached the minimal clinically important difference (MCID), respectively. The postoperative average MOCART score was 87.2 (± 9.2). No adverse events or reoperations were observed. CONCLUSIONS: Arthroscopic, autologous minced cartilage implantation for treating full-thickness acetabular cartilage lesions in FAIS shows statistically and clinically significant improvement at short-term follow-up.


Asunto(s)
Enfermedades de los Cartílagos , Pinzamiento Femoroacetabular , Humanos , Masculino , Adulto Joven , Adulto , Estudios de Seguimiento , Cartílago/cirugía , Acetábulo/cirugía , Enfermedades de los Cartílagos/cirugía , Pinzamiento Femoroacetabular/diagnóstico por imagen , Pinzamiento Femoroacetabular/cirugía , Dolor
16.
Am J Sports Med ; 51(10): 2679-2687, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37449659

RESUMEN

BACKGROUND: Minced cartilage implantation (MCI) has seen a renaissance in recent years. In this evolved technique, human articular cartilage is harvested with an arthroscopic shaver, augmented with platelet-rich plasma (PRP), and implanted with autologous thrombin. This modified technique combines the possibility of cell-based surgical cartilage repair with a minimally invasive autologous 1-step procedure. However, evidence on cell survival and preserved function after shaver-based mincing and PRP supplementation is limited. PURPOSE: To evaluate the effects of arthroscopic shaver mincing and augmentation with PRP on human cartilage tissue. STUDY DESIGN: Controlled laboratory study. METHODS: Standardized samples were taken from 12 donors during autologous MCI. A comparison of cell outgrowth, cell viability, proliferation capacity, and ability to produce extracellular matrix-specific proteoglycans after chondrogenic redifferentiation was made between cartilage taken by curettage from the border of the cartilage defect, cartilage tissue minced by an arthroscopic shaver, and cartilage tissue minced by an arthroscopic shaver that was additionally augmented with autologous PRP. RESULTS: There was no difference between all 3 groups in terms of cell outgrowth or proliferation capacity. Metabolic activity relative to the cell number of chondrocytes isolated from shaver-minced cartilage was higher compared with chondrocytes isolated from cartilage that was derived by curettage or shaver-minced cartilage that was augmented with PRP. After chondrogenic stimulation, the normalized proteoglycan content was higher in spheroids of cells derived from shaver-minced cartilage augmented with PRP than in spheroids of cells derived from curettage. A high correlation of cell outgrowth, proliferation capacity, and viability between isolated cells from all 3 groups taken from an individual donor was observed. CONCLUSION: Chondrocytes isolated from human cartilage tissue that was harvested and minced with an arthroscopic shaver remained viable and proliferative. The augmentation of shaver-minced cartilage with PRP led to the enhanced proteoglycan production of chondrogenic spheroids in vitro, pointing toward the development of a cartilage-specific extracellular matrix. This in vitro study yields promising results regarding the use of an arthroscopic shaver and augmentation with PRP in the context of MCI. CLINICAL RELEVANCE: Knowledge that shaver mincing and augmentation with PRP are feasible for processing articular cartilage during MCI is highly relevant for surgical cartilage repair.


Asunto(s)
Cartílago Articular , Plasma Rico en Plaquetas , Humanos , Condrocitos/metabolismo , Cartílago Articular/cirugía , Plasma Rico en Plaquetas/metabolismo , Matriz Extracelular , Proteoglicanos/metabolismo
17.
EFORT Open Rev ; 8(6): 409-423, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289098

RESUMEN

Cold physical plasma (CPP) technology is of high promise for various medical applications. The interplay of specific components of physical plasma with living cells, tissues and organs on a structural and functional level is of paramount interest with the aim to induce therapeutic effects in a controlled and replicable fashion. In contrast to other medical disciplines such as dermatology and oromaxillofacial surgery, research reports on CPP application in orthopaedics are scarce. The present implementation of CPP in orthopaedics involves surface modifications of orthopaedic materials and biomaterials to optimize osseointegration. In addition, the influence of CPP on musculoskeletal cells and tissues is a focus of research, including possible adverse reactions and side effects. Its bactericidal aspects make CPP an attractive supplement to current treatment regimens in case of microbial inflammations such as periprosthetic joint infections. Attributed anticancerogenic and pro-apoptotic effects underline the clinical relevance of CPP as an additive in treating malignant bone lesions. The present review outlines ongoing research in orthopaedics involving CPP; it distinguishes considerations for safe application and the need for more evidence-based research to facilitate robust clinical implementation.

18.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240019

RESUMEN

Although Ewing's sarcoma (ES) is a rare, but very aggressive tumor disease affecting the musculoskeletal system, especially in children, it is very aggressive and difficult to treat. Although medical advances and the establishment of chemotherapy represent a turning point in the treatment of ES, resistance to chemotherapy, and its side effects, continue to be problems. New treatment methods such as the application of cold physical plasma (CPP) are considered potential supporting tools since CPP is an exogenous source of reactive oxygen and nitrogen species, which have similar mechanisms of action in the tumor cells as chemotherapy. This study aims to investigate the synergistic effects of CPP and commonly used cytostatic chemotherapeutics on ES cells. The chemotherapy drugs doxorubicin and vincristine, the most commonly used in the treatment of ES, were applied to two different ES cell lines (RD-ES and A673) and their IC20 and IC50 were determined. In addition, individual chemotherapeutics in combination with CPP were applied to the ES cells and the effects on cell growth, cell viability, and apoptosis processes were examined. A single CPP treatment resulted in the dose-dependent growth inhibition of ES cells. The combination of different cytostatics and CPP led to significant growth inhibition, a reduction in cell viability, and higher rates of apoptosis compared to cells not additionally exposed to CPP. The combination of CPP treatment and the application of cytostatic drugs to ES cells showed promising results, significantly enhancing the cytotoxic effects of chemotherapeutic agents. These preclinical in vitro data indicate that the use of CPP can enhance the efficacy of common cytostatic chemotherapeutics, and thus support the translation of CPP as an anti-tumor therapy in clinical routine.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Citostáticos , Sarcoma de Ewing , Niño , Humanos , Sarcoma de Ewing/patología , Citostáticos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Vincristina/farmacología , Vincristina/uso terapéutico , Doxorrubicina/uso terapéutico , Neoplasias Óseas/metabolismo , Línea Celular Tumoral
19.
Biomedicines ; 11(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36830862

RESUMEN

Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.

20.
Biomedicines ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831137

RESUMEN

BACKGROUND: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells. Thus, the current in vitro study deals with the effect of CAP on human bone cancer cells and human osteoblasts. Here, identical CAP treatment regimens were applied to the malignant and non-malignant bone cells and their impact was compared. METHODS: Two different human bone cancer cell types, U2-OS (osteosarcoma) and A673 (Ewing's sarcoma), and non-malignant primary osteoblasts (HOB) were used. The CAP treatment was performed with the clinically approved kINPen MED. After CAP treatment, growth kinetics and a viability assay were performed. For detecting apoptosis, a caspase-3/7 assay and a TUNEL assay were used. Accumulated ROS was measured in cell culture medium and intracellular. To investigate the influence of CAP on cell motility, a scratch assay was carried out. RESULTS: The CAP treatment showed strong inhibition of cell growth and viability in bone cancer cells. Apoptotic processes were enhanced in the malignant cells. Osteoblasts showed a higher potential for ROS resistance in comparison to malignant cells. There was no difference in cell motility between benign and malignant cells following CAP treatment. CONCLUSIONS: Osteoblasts show better tolerance to CAP treatment, indicated by less affected viability compared to CAP-treated bone cancer cells. This points toward the selective effect of CAP on sarcoma cells and represents a further step toward the clinical application of CAP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA