Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Metab ; : 102041, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362601

RESUMEN

Dysregulation of hepatic cholesterol metabolism can contribute to elevated circulating cholesterol levels, which is a significant risk factor for cardiovascular disease. Cholesterol homeostasis in mammalian cells is tightly regulated by an integrated network of transcriptional and post-transcriptional signalling pathways. Whilst prior studies have identified many of the central regulators of these pathways, the extended supporting networks remain to be fully elucidated. Here, we leveraged an integrated discovery platform, combining multi-omics data from 107 strains of mice to investigate these supporting networks. We identified retinol dehydrogenase 11 (RDH11; also known as SCALD) as a novel protein associated with cholesterol metabolism. Prior studies have suggested that RDH11 may be regulated by alterations in cellular cholesterol status, but its specific roles in this pathway are mostly unknown. Here, we show that mice fed a Western diet (high fat, high cholesterol) exhibited a significant reduction in hepatic Rdh11 mRNA expression. Conversely, mice treated with a statin (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitor) exhibited a 2-fold increase in hepatic Rdh11 mRNA expression. Studies in human and mouse hepatocytes demonstrated that RDH11 expression was regulated by altered cellular cholesterol conditions in a manner consistent with SREBP2 target genes HMGCR and LDLR. Modulation of RDH11 in vitro and in vivo demonstrated modulation of pathways associated with cholesterol metabolism, inflammation and cellular stress. Finally, RDH11 silencing in mouse liver was associated with a reduction in hepatic cardiolipin abundance and a concomitant reduction in the abundance of proteins of the mitochondrial electron transport chain. Taken together, these findings suggest that RDH11 likely plays a role in protecting cells against the cellular toxicity that can arise as a by-product of endogenous cellular cholesterol synthesis.

2.
Blood Purif ; 53(6): 520-526, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39363977

RESUMEN

Extracorporeal life support (ECLS), including extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), are life-saving therapies for critically ill children. Despite this, these modalities carry frustratingly high mortality rates. One driver of mortality may be altered drug disposition due to a combination of underlying illness, patient-circuit interactions, and drug-circuit interactions. Children receiving ECMO and/or CRRT routinely receive 20 or more drugs, and data supporting optimal dosing is lacking for most of these medications. The Pediatric Paracorporeal and Extracorporeal Therapies Summit (PPETS) gathered an international group of experts in the fields of ECMO, CRRT, and other ECLS modalities to discuss the current state of these therapies, disseminate innovative support strategies, share clinical experiences, and foster future collaborations. Here, we summarize the conclusions of PPETS and put forward a pathway to optimize pharmacokinetic (PK) research in this population. We must prioritize specific medications for in-depth study to improve drug use in ECLS and patient outcomes. Based on frequency of use, potential for adverse outcomes if dosed inappropriately, and lack of existing PK data, a list of high priority drugs was compiled for future research. Researchers must additionally reconsider study designs, emphasizing pooling of resources through multi-center studies and the use of innovative PK modeling techniques. Finally, the integration of validated PK models into clinical practice must be streamlined to deliver optimal medication use at the bedside. Focusing on the proposed list of highlighted medications and key methodological considerations will maximize the impact of future research.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Niño , Farmacocinética , Terapia de Reemplazo Renal Continuo/métodos , Enfermedad Crítica/terapia , Terapia de Reemplazo Renal/métodos
3.
J Sport Health Sci ; : 100991, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341495

RESUMEN

BACKGROUND: Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. METHODS: We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS: We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION: Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.

4.
Clin Pharmacokinet ; 63(9): 1343-1356, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39331235

RESUMEN

BACKGROUND AND OBJECTIVE: Because of the pathophysiological changes associated with critical illness and the use of extracorporeal life support (ECLS) such as continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO), the pharmacokinetics of drugs are often altered. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for anakinra in children that accounts for the physiological changes associated with critical illness and ECLS technology to guide appropriate pharmacotherapy. METHODS: A PBPK model for anakinra was first developed in healthy individuals prior to extrapolating to critically ill children receiving ECLS. To account for the impact of anakinra clearance by the dialysis circuit, a CRRT compartment was added to the pediatric PBPK model and parameterized using data from a previously published ex-vivo study. Additionally, an ECMO compartment was added to the whole-body structure to create the final anakinra ECLS-PBPK model. The final model structure was validated by comparing predicted concentrations with observed patient data. Due to limited information in guiding anakinra dosing in this population, in-silico dose simulations were conducted to provide baseline recommendations. RESULTS: By accounting for changes in physiology and the addition of ECLS compartments, the final ECLS-PBPK model predicted the observed plasma concentrations in an adolescent receiving subcutaneous anakinra. Furthermore, dosing simulations suggest that anakinra exposure in adolescents receiving ECLS is similar to that in healthy counterparts. CONCLUSION: The anakinra ECLS-PBPK model developed in this study is the first to predict plasma concentrations in a population receiving simultaneous CRRT and ECMO. Dosing simulations provided may be used to inform anakinra use in critically ill children and guide future clinical trial planning.


Asunto(s)
Enfermedad Crítica , Oxigenación por Membrana Extracorpórea , Proteína Antagonista del Receptor de Interleucina 1 , Modelos Biológicos , Humanos , Proteína Antagonista del Receptor de Interleucina 1/farmacocinética , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Enfermedad Crítica/terapia , Oxigenación por Membrana Extracorpórea/métodos , Niño , Preescolar , Adolescente , Masculino , Femenino , Lactante , Terapia de Reemplazo Renal Continuo/métodos , Simulación por Computador
5.
J Extra Corpor Technol ; 56(3): 101-107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39303131

RESUMEN

BACKGROUND: Patients supported with extracorporeal life support (ECLS) circuits such as ECMO and CRRT often require high doses of sedatives and analgesics, including ketamine and dexmedetomidine. Concentrations of many medications are affected by ECLS circuits through adsorption to the circuit components, dialysis, as well as the large volume of blood used to prime the circuits. However, the impact of ECLS circuits on ketamine and dexmedetomidine pharmacokinetics has not been well described. This study determined ketamine and dexmedetomidine extraction by extracorporeal circuits in an ex-vivo system. METHODS: Medication was administered at therapeutic concentration to blood-primed, closed-loop ex-vivo ECMO and CRRT circuits. Drug concentrations were measured in plasma, hemofiltrate, and control samples at multiple time points throughout the experiments. At each sample time point, the percentage of drug recovery was calculated. RESULTS: Ketamine plasma concentration in the ECMO and CRRT circuits decreased rapidly, with 43.8% recovery (SD = 0.6%) from ECMO circuits after 8 h and 3.3% (SD = 1.8%) recovery from CRRT circuits after 6 h. Dexmedetomidine was also cleared from CRRT circuits, with 20.3% recovery (SD = 1.8%) after 6 h. Concentrations of both medications were very stable in the control experiments, with approximately 100% drug recovery of both ketamine and dexmedetomidine after 6 h. CONCLUSION: Ketamine and dexmedetomidine concentrations are significantly affected by ECLS circuits, indicating that dosing adjustments are needed for patients supported with ECMO and CRRT.


Asunto(s)
Dexmedetomidina , Oxigenación por Membrana Extracorpórea , Ketamina , Ketamina/administración & dosificación , Ketamina/farmacocinética , Ketamina/sangre , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacocinética , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Hipnóticos y Sedantes/farmacocinética , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/sangre
6.
Clin Pharmacol Ther ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205386

RESUMEN

Data published on the oral clavulanic acid pharmacokinetics in the pediatric population is lacking. This research aimed to describe clavulanic acid disposition following oral and intravenous administration and to provide insights into clavulanic acid exposure based on threshold concentrations for (pre-)term neonates and infants. This pooled population pharmacokinetic study combined four datasets for analysis in NONMEM v7.4.3. Clavulanic acid exposure was simulated using the percentage of time above the threshold concentrations (%fT > CT). Multiple dosage regimens and amoxicillin/clavulanic acid dosage ratios were evaluated. The cohort consisted of 89 (42 oral, 47 intravenous) subjects (403 samples) with a median (range) postnatal age 54.5 days (0-365), gestational age 37.4 weeks (23.0-41.7), and current bodyweight 3.9 kg (0.6-9.0). A one-compartment model with first-order absorption best described clavulanic acid pharmacokinetics with postnatal age as a covariate on the inter-individual variability of clearance. Oral bioavailability was 24.4% in neonates up to 10 days of age. An oral dosing regimen 90 mg/kg/day amoxicillin/clavulanic acid (4:1 ratio) resulted in 40.2% of simulated patients achieving 100% fT > CT,2mg/L. An amoxicillin/clavulanic acid ratio of 4:1 is preferred for neonatal oral regimens due to the higher exposure along the entire %fT > CT range (0-100%) as ratios higher than 4:1 might result in inadequate exposure. Our results highlight substantial exposure differences (%fT > CT) when using threshold concentrations of 1 mg/L vs. 2 mg/L. This first population pharmacokinetic model for clavulanic acid in neonates may serve as a foundational step for future research, once more precise clavulanic acid targets become available.

7.
Pediatr Crit Care Med ; 25(7): 643-675, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959353

RESUMEN

OBJECTIVES: To present recommendations and consensus statements with supporting literature for the clinical management of neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE (PEACE) consensus conference. DATA SOURCES: Systematic review was performed using PubMed, Embase, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021, followed by serial meetings of international, interprofessional experts in the management ECMO for critically ill children. STUDY SELECTION: The management of ECMO anticoagulation for critically ill children. DATA EXTRACTION: Within each of eight subgroup, two authors reviewed all citations independently, with a third independent reviewer resolving any conflicts. DATA SYNTHESIS: A systematic review was conducted using MEDLINE, Embase, and Cochrane Library databases, from January 1988 to May 2021. Each panel developed evidence-based and, when evidence was insufficient, expert-based statements for the clinical management of anticoagulation for children supported with ECMO. These statements were reviewed and ratified by 48 PEACE experts. Consensus was obtained using the Research and Development/UCLA Appropriateness Method. Results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. We developed 23 recommendations, 52 expert consensus statements, and 16 good practice statements covering the management of ECMO anticoagulation in three broad categories: general care and monitoring; perioperative care; and nonprocedural bleeding or thrombosis. Gaps in knowledge and research priorities were identified, along with three research focused good practice statements. CONCLUSIONS: The 91 statements focused on clinical care will form the basis for standardization and future clinical trials.


Asunto(s)
Anticoagulantes , Enfermedad Crítica , Oxigenación por Membrana Extracorpórea , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Anticoagulantes/uso terapéutico , Anticoagulantes/administración & dosificación , Niño , Enfermedad Crítica/terapia , Recién Nacido , Lactante , Preescolar
8.
Pediatr Crit Care Med ; 25(7 Suppl 1): e35-e43, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959358

RESUMEN

OBJECTIVES: To derive systematic review informed, modified Delphi consensus regarding monitoring and replacement of specific coagulation factors during pediatric extracorporeal membrane oxygenation (ECMO) support for the Pediatric ECMO Anticoagulation CollaborativE. DATA SOURCES: A structured literature search was performed using PubMed, Embase, and Cochrane Library (CENTRAL) databases from January 1988 to May 2020, with an update in May 2021. STUDY SELECTION: Included studies assessed monitoring and replacement of antithrombin, fibrinogen, and von Willebrand factor in pediatric ECMO support. DATA EXTRACTION: Two authors reviewed all citations independently, with conflicts resolved by a third reviewer if required. Twenty-nine references were used for data extraction and informed recommendations. Evidence tables were constructed using a standardized data extraction form. DATA SYNTHESIS: Risk of bias was assessed using the Quality in Prognosis Studies tool. The evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation system. A panel of 48 experts met over 2 years to develop evidence-based recommendations and, when evidence was lacking, expert-based consensus statements. A web-based modified Delphi process was used to build consensus via the Research And Development/University of California Appropriateness Method. Consensus was defined as greater than 80% agreement. We developed one weak recommendation and four expert consensus statements. CONCLUSIONS: There is insufficient evidence to formulate recommendations on monitoring and replacement of antithrombin, fibrinogen, and von Willebrand factor in pediatric patients on ECMO. Optimal monitoring and parameters for replacement of key hemostasis parameters is largely unknown.


Asunto(s)
Antitrombinas , Técnica Delphi , Oxigenación por Membrana Extracorpórea , Fibrinógeno , Factor de von Willebrand , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Fibrinógeno/análisis , Antitrombinas/uso terapéutico , Niño , Factor de von Willebrand/análisis , Anticoagulantes/administración & dosificación , Anticoagulantes/uso terapéutico
9.
Pediatr Crit Care Med ; 25(7 Suppl 1): e44-e52, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959359

RESUMEN

OBJECTIVES: To derive systematic-review informed, modified Delphi consensus regarding antifibrinolytic and adjunct hemostatic agents in neonates and children supported with extracorporeal membrane oxygenation (ECMO) for the Pediatric ECMO Anticoagulation CollaborativE consensus conference. DATA SOURCES: A structured literature search was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021. STUDY SELECTION: Use of antifibrinolytics (epsilon-aminocaproic acid [EACA] or tranexamic acid), recombinant factor VII activated (rFVIIa), or topical hemostatic agents (THAs). DATA EXTRACTION: Two authors reviewed all citations independently, with a third independent reviewer resolving conflicts. Eleven references were used for data extraction and informed recommendations. Evidence tables were constructed using a standardized data extraction form. MEASUREMENTS AND MAIN RESULTS: Risk of bias was assessed using the Quality in Prognosis Studies tool. The evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation system. Forty-eight experts met over 2 years to develop evidence-based recommendations and, when evidence was lacking, expert-based consensus statements for the management of bleeding and thrombotic complications in pediatric ECMO patients. A web-based modified Delphi process was used to build consensus via the Research And Development/University of California Appropriateness Method. Consensus was defined as greater than 80% agreement. One weak recommendation and three consensus statements are presented. CONCLUSIONS: Evidence supporting recommendations for administration of antifibrinolytics (EACA or tranexamic acid), rFVIIa, and THAs were sparse and inconclusive. Much work remains to determine effective and safe usage strategies.


Asunto(s)
Antifibrinolíticos , Técnica Delphi , Oxigenación por Membrana Extracorpórea , Hemostáticos , Ácido Tranexámico , Humanos , Antifibrinolíticos/uso terapéutico , Antifibrinolíticos/administración & dosificación , Oxigenación por Membrana Extracorpórea/métodos , Niño , Hemostáticos/uso terapéutico , Hemostáticos/administración & dosificación , Ácido Tranexámico/uso terapéutico , Ácido Tranexámico/administración & dosificación , Factor VIIa/uso terapéutico , Factor VIIa/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Recién Nacido , Ácido Aminocaproico/uso terapéutico , Ácido Aminocaproico/administración & dosificación , Hemorragia/prevención & control , Anticoagulantes/administración & dosificación , Anticoagulantes/uso terapéutico , Lactante , Consenso
10.
Pediatr Crit Care Med ; 25(7 Suppl 1): e78-e89, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959362

RESUMEN

OBJECTIVES: To identify and prioritize research questions for anticoagulation and hemostasis management of neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE (PEACE) consensus. DATA SOURCES: Systematic review was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021, followed by serial consensus conferences of international, interprofessional experts in the management of ECMO for critically ill neonates and children. STUDY SELECTION: The management of ECMO anticoagulation for critically ill neonates and children. DATA EXTRACTION: Within each of the eight subgroups, two authors reviewed all citations independently, with a third independent reviewer resolving any conflicts. DATA SYNTHESIS: Following the systematic review of MEDLINE, EMBASE, and Cochrane Library databases from January 1988 to May 2021, and the consensus process for clinical recommendations and consensus statements, PEACE panel experts constructed research priorities using the Child Health and Nutrition Research Initiative methodology. Twenty research topics were prioritized, falling within five domains (definitions and outcomes, therapeutics, anticoagulant monitoring, protocolized management, and impact of the ECMO circuit and its components on hemostasis). CONCLUSIONS: We present the research priorities identified by the PEACE expert panel after a systematic review of existing evidence informing clinical care of neonates and children managed with ECMO. More research is required within the five identified domains to ultimately inform and improve the care of this vulnerable population.


Asunto(s)
Anticoagulantes , Oxigenación por Membrana Extracorpórea , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Anticoagulantes/uso terapéutico , Anticoagulantes/administración & dosificación , Niño , Recién Nacido , Enfermedad Crítica/terapia , Investigación Biomédica/métodos , Lactante , Preescolar
11.
Artículo en Inglés | MEDLINE | ID: mdl-39033462

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device commonly used to treat cardiac arrest in children. The American Heart Association guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care recommend using amiodarone as a first-line agent to treat ventricular arrhythmias in children with cardiac arrest. However, there are no dosing recommendations for amiodarone to treat ventricular arrhythmias in pediatric patients on ECMO. Amiodarone has a high propensity for adsorption to the ECMO components due to its physicochemical properties leading to altered pharmacokinetics (PK) in ECMO patients. The change in amiodarone PK due to interaction with ECMO components may result in a difference in optimal dosing in patients on ECMO when compared with non-ECMO patients. To address this clinical knowledge gap, a physiologically-based pharmacokinetic model of amiodarone was developed in adults and scaled to children, followed by the addition of an ECMO compartment. The pediatric model included ontogeny functions of cytochrome P450 (CYP450) enzyme maturation across various age groups. The ECMO compartment was parameterized using the adsorption data of amiodarone obtained from ex vivo studies. Model predictions captured observed concentrations of amiodarone in pediatric patients with ECMO well with an average fold error between 0.5 and 2. Model simulations support an amiodarone intravenous (i.v) bolus dose of 22 mg/kg (neonates), 13 mg/kg (infants), 8 mg/kg (children), and 6 mg/kg (adolescents). This PBPK modeling approach can be applied to explore the dosing of other drugs used in children on ECMO.

12.
FASEB J ; 38(10): e23647, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787599

RESUMEN

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferasas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ratones , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Masculino , Metilación , Femenino , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Proteoma/metabolismo
13.
Eur J Pharm Biopharm ; 198: 114261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490349

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass technology for critically ill patients with heart and lung failure. Patients treated with ECMO receive a range of drugs that are used to treat underlying diseases and critical illnesses. However, the dosing guidelines for these drugs used in ECMO patients are unclear. Mortality rate for patients on ECMO exceeds 40% partly due to inaccurate dosing information, caused in part by the adsorption of drugs in the ECMO circuit and its components. These drugs range in hydrophobicity, electrostatic interactions, and pharmacokinetics. Propofol is commonly administered to ECMO patients and is known to have high adsorption rates to the circuit components due to its hydrophobicity. To reduce adsorption onto the circuit components, we used micellar block copolymers (Poloxamer 188TM and Poloxamer 407TM) and liposomes tethered with poly(ethylene glycol) to encapsulate propofol, provide a hydrophilic shell and prevent its adsorption. Size, polydispersity index (PDI), and zeta potential of the delivery systems were characterized by dynamic light scattering, and encapsulation efficiency was characterized using High Performance Liquid Chromatography (HPLC). All delivery systems used demonstrated colloidal stability at physiological conditions for seven days, cytocompatibility with a human leukemia monocytic cell line, i.e., THP-1 cells, and did not activate the complement pathway in human plasma. We demonstrated a significant reduction in adsorption of propofol in an in-vitro ECMO model upon encapsulation in micelles and liposomes. These results show promise in reducing the adsorption of hydrophobic drugs to the ECMO circuits by encapsulation in nanoscale structures tethered with hydrophilic polymers on the surface.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Propofol , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Adsorción , Liposomas , Corazón , Enfermedad Crítica/terapia
14.
Heart Rhythm ; 21(7): 1134-1142, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38417598

RESUMEN

BACKGROUND: Loading of oral sotalol for atrial fibrillation requires 3 days, frequently in the hospital, to achieve steady state. The Food and Drug Administration approved loading with intravenous (IV) sotalol through model-informed development, without patient data. OBJECTIVE: We present results of the first multicenter evaluation of this recent labeling for IV sotalol. METHODS: The Prospective Evaluation Analysis and Kinetics of IV Sotalol (PEAKS) Registry was a multicenter observational registry of patients undergoing elective IV sotalol load for atrial arrhythmias. Outcomes, measured from hospital admission until first outpatient follow-up, included adverse arrhythmia events, efficacy, and length of stay. RESULTS: Of 167 consecutively enrolled patients, 23% were female; the median age was 68 (interquartile range, 61-74) years, and the median CHA2DS2-VASc score was 3 (interquartile range, 2-4). Overall, 99% were admitted for sotalol initiation (1% for dose escalation), with a target oral sotalol dose of either 80 mg twice daily (85 [51%]) or 120 mg twice daily (78 [47%]); 62 patients (37%) had an estimated creatinine clearance ≤90 mL/min. On presentation, 40% of patients were in sinus rhythm, whereas 26% underwent cardioversion before sotalol infusion. In 2 patients, sotalol infusion was stopped for bradycardia or hypotension. In 6 patients, sotalol was discontinued before discharge because of QTc prolongation (3), bradycardia (1), or recurrent atrial arrhythmia (2). The mean length of stay was 1.1 days, and 95% (n = 159) were discharged within 1 night. CONCLUSION: IV sotalol loading is safe and feasible for atrial arrhythmias, with low rates of adverse events, and yields shorter hospitalizations. More data are needed on the minimal duration required for monitoring in the hospital.


Asunto(s)
Antiarrítmicos , Fibrilación Atrial , Sistema de Registros , Sotalol , Humanos , Sotalol/administración & dosificación , Femenino , Masculino , Fibrilación Atrial/tratamiento farmacológico , Persona de Mediana Edad , Antiarrítmicos/administración & dosificación , Anciano , Estudios Prospectivos , Relación Dosis-Respuesta a Droga , Resultado del Tratamiento , Infusiones Intravenosas , Administración Intravenosa , Estudios de Seguimiento
15.
J Perinatol ; 44(2): 157-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37684547

RESUMEN

Delirium in the NICU is an underrecognized phenomenon in infants who are often complex and critically ill. The current understanding of NICU delirium is developing and can be informed by adult and pediatric literature. The NICU population faces many potential risk factors for delirium, including young age, developmental delay, mechanical ventilation, severe illness, and surgery. There are no diagnostic tools specific to infants. The mainstay of delirium treatment is to treat the underlying cause, address modifiable risk factors, and supportive care. This review will summarize current knowledge and areas where more research is needed.


Asunto(s)
Delirio , Lactante , Recién Nacido , Adulto , Niño , Humanos , Delirio/diagnóstico , Delirio/etiología , Delirio/terapia , Unidades de Cuidado Intensivo Neonatal , Enfermedad Crítica , Respiración Artificial/efectos adversos , Factores de Riesgo
16.
Pediatr Nephrol ; 39(5): 1521-1532, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38051389

RESUMEN

BACKGROUND: Hemodialysis is a life-saving technology used during periods of acute or chronic kidney failure to remove toxins, and maintain fluid, electrolyte and metabolic balance. While this technology plays an important role for pediatric patients with kidney dysfunction, it can alter the pharmacokinetic behavior of medications placing patients at risk for suboptimal dosing and drug toxicity. The ability to directly translate pharmacokinetic alterations into dosing recommendations has thus far been limited and dosing guidance specific to pediatric hemodialysis patients is rare. Despite differences in dialysis prescription and patient populations, intermittent (iHD) and continuous kidney replacement therapy (CKRT) patients are often pooled together. In order to develop evidence-based dosing guidelines, it is important to first prioritize drugs for study in each modality. METHODS: Here we aim to identify priority drugs in two hemodialysis modalities, through: 1) Identification of hospitalized, pediatric patients who received CKRT or intermittent hemodialysis (iHD) using a machine learning-based predictive model based on medications; 2) Identification of medication administration patterns in these patient cohorts; and 3) Identification of the most commonly prescribed drugs that lack published dosing guidance. RESULTS: Notable differences were found in the pattern of medications and drug dosing guidance between iHD and CKRT patients. Antibiotics, diuretics and sedatives were more common in CKRT patients. Out of the 50 most commonly administered medications in the two modalities, only 34% and 28% had dosing guidance present for iHD and CKRT, respectively. CONCLUSIONS: Our results add to the understanding of the differences between iHD and CKRT patient populations by identifying commonly used medications that lack dosing guidance for each hemodialysis modality, helping to pinpoint priority medications for further study. Overall, this study provides an overview of the current limitations in medication use in this at-risk population, and provides a framework for future studies by identifying commonly used medications in pediatric CKRT and iHD patients.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Fallo Renal Crónico , Niño , Humanos , Lesión Renal Aguda/epidemiología , Antibacterianos/uso terapéutico , Fallo Renal Crónico/terapia , Fallo Renal Crónico/metabolismo , Preparaciones Farmacéuticas , Diálisis Renal/métodos , Terapia de Reemplazo Renal
17.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 576-588, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38156758

RESUMEN

Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.


Asunto(s)
Furosemida , Proteínas de Neoplasias , Lactante , Recién Nacido , Niño , Humanos , Funciones de Verosimilitud , Meropenem , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Modelos Biológicos , Ciprofloxacina
18.
J Extra Corpor Technol ; 55(4): 159-166, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099629

RESUMEN

BACKGROUND: Meropenem is a broad-spectrum carbapenem-type antibiotic commonly used to treat critically ill patients infected with extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae. As many of these patients require extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapy (CRRT), it is important to understand how these extracorporeal life support circuits impact meropenem pharmacokinetics. Based on the physicochemical properties of meropenem, it is expected that ECMO circuits will minimally extract meropenem, while CRRT circuits will rapidly clear meropenem. The present study seeks to determine the extraction of meropenem from ex vivo ECMO and CRRT circuits and elucidate the contribution of different ECMO circuit components to extraction. METHODS: Standard doses of meropenem were administered to three different configurations (n = 3 per configuration) of blood-primed ex vivo ECMO circuits and serial sampling was conducted over 24 h. Similarly, standard doses of meropenem were administered to CRRT circuits (n = 4) and serial sampling was conducted over 4 h. Meropenem was administered to separate tubes primed with circuit blood to serve as controls to account for drug degradation. Meropenem concentrations were quantified, and percent recovery was calculated for each sample. RESULTS: Meropenem was cleared at a similar rate in ECMO circuits of different configurations (n = 3) and controls (n = 6), with mean (standard deviation) recovery at 24 h of 15.6% (12.9) in Complete circuits, 37.9% (8.3) in Oxygenator circuits, 47.1% (8.2) in Pump circuits, and 20.6% (20.6) in controls. In CRRT circuits (n = 4) meropenem was cleared rapidly compared with controls (n = 6) with a mean recovery at 2 h of 2.36% (1.44) in circuits and 93.0% (7.1) in controls. CONCLUSION: Meropenem is rapidly cleared by hemodiafiltration during CRRT. There is minimal adsorption of meropenem to ECMO circuit components; however, meropenem undergoes significant degradation and/or plasma metabolism at physiological conditions. These ex vivo findings will advise pharmacists and physicians on the appropriate dosing of meropenem.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Humanos , Meropenem , Antibacterianos/farmacocinética , Carbapenémicos
19.
Crit Care Explor ; 5(12): e1010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107537

RESUMEN

OBJECTIVES: Patients with sepsis are at significant risk for multiple organ dysfunction, including the lungs and kidneys. To manage the morbidity associated with kidney impairment, continuous renal replacement therapy (CRRT) may be required. The extent of anakinra pharmacokinetics in CRRT remains unknown. The objectives of this study were to investigate the anakinra-circuit interaction and quantify the rate of removal from plasma. DESIGN: The anakinra-circuit interaction was evaluated using a closed-loop ex vivo CRRT circuit. CRRT was performed in three phases based on the method of solute removal: 1) hemofiltration, 2) hemodialysis, and 3) hemodiafiltration. Standard control samples of anakinra were included to assess drug degradation. SETTING: University research laboratory. PATIENTS: None. INTERVENTIONS: Anakinra was administered to the CRRT circuit and serial prefilter blood samples were collected along with time-matched control and hemofiltrate samples. Each circuit was run in triplicate to assess inter-run variability. Concentrations of anakinra in each reference fluid were measured by enzyme-linked immunosorbent assay. Transmembrane filter clearance was estimated by the product of the sieving coefficient/dialysate saturation constant and circuit flow rates. MEASUREMENTS AND MAIN RESULTS: Removal of anakinra from plasma occurred within minutes for each CRRT modality. Average drug remaining (%) in plasma following anakinra administration was lowest with hemodiafiltration (34.9%). The average sieving coefficient was 0.34, 0.37, and 0.41 for hemodiafiltration, hemofiltration, and hemodialysis, respectively. Transmembrane clearance was fairly consistent across each modality with the highest during hemodialysis (5.53 mL/min), followed by hemodiafiltration (4.99 mL/min), and hemofiltration (3.94 mL/min). Percent drug remaining within the control samples (93.1%) remained consistent across each experiment, indicating negligible degradation within the blood. CONCLUSIONS: The results of this analysis are the first to demonstrate that large molecule therapeutic proteins such as anakinra, are removed from plasma with modern CRRT technology. Current dosing recommendations for patients with severe renal impairment may result in subtherapeutic anakinra concentrations in those receiving CRRT.

20.
J Extra Corpor Technol ; 55(4): 194-196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099634

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device that provides life-saving complete respiratory and cardiac support in patients with cardiorespiratory failure. The majority of drugs prescribed to patients on ECMO lack a dosing strategy optimized for ECMO patients. Several studies demonstrated that dosing is different in this population because the ECMO circuit components can adsorb drugs and affect drug exposure substantially. Saturation of ECMO circuit components by drug disposition has been posited but has not been proven. In this study, we have attempted to determine if propofol adsorption is saturable in ex vivo ECMO circuits. METHODS: We injected ex vivo ECMO circuits with propofol, a drug that is highly adsorbed to the ECMO circuit components. Propofol was injected as a bolus dose (50 µg/mL) and a continuous infusion dose (6 mg/h) to investigate the saturation of the ECMO circuit. RESULTS: After the bolus dose, only 27% of propofol was recovered after 30 minutes which is as expected. However, >80% propofol was recovered after the infusion dose which persisted even when the infusion dose was discontinued. CONCLUSION: Our results suggest that if ECMO circuits are dosed directly with propofol, drug adsorption can be eliminated as a cause for altered drug exposure. Field of Research: Artificial Lung/ECMO.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Propofol , Insuficiencia Respiratoria , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Insuficiencia Respiratoria/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA