RESUMEN
Existing tissue adhesives and sealants are far from satisfactory when applied on wet and dynamic tissues. Herein, we report a strategy for designing biodegradable super-strong aqueous glue (B-Seal) for surgical uses inspired by an English ivy adhesion strategy and a cement particle packing theory. B-Seal is a fast-gelling, super-strong, and elastic adhesive sealant composed of injectable water-borne biodegradable polyurethane (WPU) nanodispersions with mismatched particle sizes and counterions in its A-B formulation. B-Seal showed 24-fold greater burst pressure than DuraSeal®, 138-fold greater T-pull adhesive strength than fibrin glue, and 16-fold greater lap shear strength than fibrin glue. In vivo evaluation on a rat cerebrospinal fluid (CSF) rhinorrhea model and a porcine craniotomy model validated the safety and efficacy of B-Seal for effective CSF leak prevention and dura repair. The plant-inspired adhesion strategy combined with particle packing theory represents a new direction of designing the next-generation wet tissue adhesives for surgeries.
RESUMEN
Glioblastoma (GBM), the deadliest form of brain cancer, presents long-standing problems due to its localization. Chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a powerful strategy to treat cancer. IL-13-receptor-α2 (IL13Rα2), present in over 75% of GBMs, has been recognized as an attractive candidate for anti-glioblastoma therapy. Here, we propose a novel multidisciplinary approach to target brain tumors using a combination of fluorescent, therapeutic nanoparticles and CAR T cells modified with a targeted-quadruple-mutant of IL13 (TQM-13) shown to have high binding affinity to IL13Rα2-expressing glioblastoma cells with low off-target toxicity. Azide-alkyne cycloaddition conjugation of nanoparticles to the surface of T cells allowed a facile, selective, and high-yielding clicking of the nanoparticles. Nanoparticles clicked onto T cells were retained for at least 8 days showing that the linkage is stable and promising a suitable time window for in vivo delivery. T cells clicked with doxorubicin-loaded nanoparticles showed a higher cytotoxic effect in vitro compared to bare T cells. In vitro and in vivo T cells expressing TQM-13 served as delivery shuttles for nanoparticles and significantly increased the number of nanoparticles reaching brain tumors compared to nanoparticles alone. This work represents a new platform to allow the delivery of therapeutic nanoparticles and T cells to solid tumors.
RESUMEN
The malignant phenotype of glioblastoma multiforme (GBM) is believed to be largely driven by glioma stem-like cells (GSCs), and targeting GSCs is now considered a promising new approach to treatment of this devastating disease. Here, we show that SN50, a cell-permeable peptide inhibitor of NFκB, induced robust differentiation of human GSCs, causing loss of their oncogenic potential. We observed that following treatment of GSCs with SN50, their differentiated progeny cells showed significant decreases in their capability to form neuro-spheres and to invade in vitro and a reduction in their tumorigenicity in mouse xenograft models, but had increased sensitivity to the chemotherapeutic drug temozolomide and to radiation treatment. These results suggest that blocking the NFκB pathway may be explored as a useful mean to induce differentiation of GSCs, and provide another supportive evidence for the promise of differentiation therapy in treatment of malignant brain tumors.