Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 4045, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744835

RESUMEN

Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ferritinas , Hierro , Transferrina , Animales , Hierro/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ferritinas/metabolismo , Ferritinas/genética , Transferrina/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Endosomas/metabolismo , Humanos , Transporte de Proteínas
3.
Nat Ecol Evol ; 7(10): 1706-1713, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735563

RESUMEN

Fossil proteins are valuable tools in evolutionary biology. Recent technological advances and better integration of experimental methods have confirmed the feasibility of biomolecular preservation in deep time, yielding new insights into the timing of key evolutionary transitions. Keratins (formerly α-keratins) and corneous ß-proteins (CBPs, formerly ß-keratins) are of particular interest as they define tissue structures that underpin fundamental physiological and ecological strategies and have the potential to inform on the molecular evolution of the vertebrate integument. Reports of CBPs in Mesozoic fossils, however, appear to conflict with experimental evidence for CBP degradation during fossilization. Further, the recent model for molecular modification of feather chemistry during the dinosaur-bird transition does not consider the relative preservation potential of different feather proteins. Here we use controlled taphonomic experiments coupled with infrared and sulfur X-ray spectroscopy to show that the dominant ß-sheet structure of CBPs is progressively altered to α-helices with increasing temperature, suggesting that (α-)keratins and α-helices in fossil feathers are most likely artefacts of fossilization. Our analyses of fossil feathers shows that this process is independent of geological age, as even Cenozoic feathers can comprise primarily α-helices and disordered structures. Critically, our experiments show that feather CBPs can survive moderate thermal maturation. As predicted by our experiments, analyses of Mesozoic feathers confirm that evidence of feather CBPs can persist through deep time.


Asunto(s)
Plumas , beta-Queratinas , Animales , Queratinas/análisis , Queratinas/genética , Queratinas/metabolismo , beta-Queratinas/análisis , beta-Queratinas/genética , beta-Queratinas/metabolismo , Evolución Biológica , Piel
4.
Angew Chem Int Ed Engl ; 62(39): e202309258, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37559432

RESUMEN

Nitrogen recovery from wastewater represents a sustainable route to recycle reactive nitrogen (Nr). It can reduce the demand of producing Nr from the energy-extensive Haber-Bosch process and lower the risk of causing eutrophication simultaneously. In this aspect, source-separated fresh urine is an ideal source for nitrogen recovery given its ubiquity and high nitrogen contents. However, current techniques for nitrogen recovery from fresh urine require high energy input and are of low efficiencies because the recovery target, urea, is a challenge to separate. In this work, we developed a novel fresh urine nitrogen recovery treatment process based on modular functionalized metal-organic frameworks (MOFs). Specifically, we employed three distinct modification methods to MOF-808 and developed robust functional materials for urea hydrolysis, ammonium adsorption, and ammonia monitoring. By integrating these functional materials into our newly developed nitrogen recovery treatment process, we achieved an average of 75 % total nitrogen reduction and 45 % nitrogen recovery with a 30-minute treatment of synthetic fresh urine. The nitrogen recovery process developed in this work can serve as a sustainable and efficient nutrient management that is suitable for decentralized wastewater treatment. This work also provides a new perspective of implementing versatile advanced materials for water and wastewater treatment.


Asunto(s)
Estructuras Metalorgánicas , Nitrógeno , Amoníaco , Aguas Residuales , Urea
5.
J Trace Elem Med Biol ; 78: 127182, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37130496

RESUMEN

BACKGROUND: Despite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat. METHODS: Inductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age. RESULTS: Both sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord. CONCLUSION: Severe caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.


Asunto(s)
Cobre , Manganeso , Ratas , Animales , Masculino , Femenino , Humanos , Ratas Wistar , Calcio , Zinc , Músculo Esquelético
6.
J Hazard Mater ; 454: 131453, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116330

RESUMEN

This study focused on the non-destructive characterization of potentially hazardous Victorian-era books found in the Northwestern University Libraries. XRF, Raman and FTIR were used to identify and isolate hazardous books containing As-based pigments. These techniques also permitted, on selected books, to characterize the pigment as being Emerald green. However, none allowed for the identification of equally hazardous degradation products or potential transfer to adjacent books. These analytical gaps create limits in thoroughly identifying the level of risks associated with these books for library users and hampered the application of effective risk mitigation measures. Such limitations were overcome with synchrotron radiation (SR) techniques. Through SR-XRF, Cu/As distributions were mapped across covers and spines of green and neighboring books, whereas SR-X-ray absorption near edge structure (SR-XANES) was used to characterize the As oxidation state, leading to the identification of arsenates as degradation products. Besides successfully identifying hazardous books, this study demonstrated that hazards extend beyond As-containing green books to innocuous, long-standing neighboring books and non-colored pages due to migration and transfer of pigment and degradation products. Aside from helping to implement workplace health and safety measures, this study also informs how other libraries can identify and characterize potentially hazardous items in their collections.

7.
Sci Adv ; 9(14): eadg1530, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027468

RESUMEN

Sedimentological, textural, and microscale analyses of the Mount McRae Shale revealed a complex postdepositional history, previously unrecognized in bulk geochemical studies. We found that metal enrichments in the shale do not reside with depositional organic carbon, as previously proposed by Anbar et al., but with late-stage pyrite, compromising claims for a "whiff" of oxygen ~50 million years before the Great Oxygenation Event.

8.
J Am Chem Soc ; 145(16): 8847-8859, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058004

RESUMEN

Paintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (As2O3), but previous research also showed the abundant presence of As(V) species. In this study, we investigate the influence of the presence of a medium on the degradation mechanism of orpiment (As2S3) using synchrotron radiation (SR)-based tomographic transmission X-ray microscopy, SR-based micro-X-ray fluorescence, and X-ray absorption near edge structure spectroscopy. Upon direct illumination of dry orpiment powder using UV-visible light, only the formation of As2O3 was observed. When As2S3 was surrounded by a medium and illuminated, As2O3 was only observed in the area directly exposed to light, while As(V) degradation species were found elsewhere in the medium. Without accelerated artificial light aging, As(V)(aq) species are formed and migrate throughout the medium within weeks after preparation. In both scenarios, the As(V) species form via intermediate As(III)(aq) species and the presence of a medium is necessary. As(V)(aq) species can react with available cations to form insoluble metal arsenates, which induces stress within the paint layers (leading to, e.g., cracks and delamination) or can lead to a visual change of the image of the painting.

9.
J Synchrotron Radiat ; 30(Pt 2): 407-416, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891854

RESUMEN

Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Z elements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg-1 in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.


Asunto(s)
Arsénico , Oryza , Humanos , Rayos X , Sincrotrones , Arsénico/análisis , Radiografía
10.
Geobiology ; 21(3): 290-309, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36651474

RESUMEN

Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate (shell-forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X-ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light-colored, translucent appearance in transmitted light.


Asunto(s)
Hierro , Espectrometría Raman , Arizona , Espectrometría Raman/métodos
11.
Rev Sci Instrum ; 93(8): 083101, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050052

RESUMEN

Here, we describe a new synchrotron X-ray Fluorescence (XRF) imaging instrument with an integrated High Energy Fluorescence Detection X-ray Absorption Spectroscopy (HERFD-XAS) spectrometer at the Stanford Synchrotron Radiation Lightsource at beamline 6-2. The X-ray beam size on the sample can be defined via a range of pinhole apertures or focusing optics. XRF imaging is performed using a continuous rapid scan system with sample stages covering a travel range of 250 × 200 mm2, allowing for multiple samples and/or large samples to be mounted. The HERFD spectrometer is a Johann-type with seven spherically bent 100 mm diameter crystals arranged on intersecting Rowland circles of 1 m diameter with a total solid angle of about 0.44% of 4π sr. A wide range of emission lines can be studied with the available Bragg angle range of ∼64.5°-82.6°. With this instrument, elements in a sample can be rapidly mapped via XRF and then selected features targeted for HERFD-XAS analysis. Furthermore, utilizing the higher spectral resolution of HERFD for XRF imaging provides better separation of interfering emission lines, and it can be used to select a much narrower emission bandwidth, resulting in increased image contrast for imaging specific element species, i.e., sparse excitation energy XAS imaging. This combination of features and characteristics provides a highly adaptable and valuable tool in the study of a wide range of materials.


Asunto(s)
Imagen Óptica , Sincrotrones , Óptica y Fotónica , Espectrometría por Rayos X/métodos , Rayos X
12.
Geobiology ; 20(5): 707-725, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35894090

RESUMEN

Biogeochemical cycling of sulfur is relatively understudied in terrestrial environments compared to marine environments. However, the comparative ease of access, observation, and sampling of terrestrial settings can expand our understanding of organisms and processes important in the modern sulfur cycle. Furthermore, these sites may allow for the discovery of useful process analogs for ancient sulfur-metabolizing microbial communities at times in Earth's past when atmospheric O2 concentrations were lower and sulfide was more prevalent in Earth surface environments. We identified a new site at Santa Paula Creek (SPC) in Ventura County, CA-a remarkable freshwater, gravel-bedded mountain stream charged with a range of oxidized and reduced sulfur species and heavy hydrocarbons from the emergence of subsurface fluids within the underlying sulfur- and organic-rich Miocene-age Monterey Formation. SPC hosts a suite of morphologically distinct microbial biofacies that form in association with the naturally occurring hydrocarbon seeps and sulfur springs. We characterized the geology, stream geochemistry, and microbial facies and diversity of the Santa Paula Creek ecosystem. Using geochemical analyses and 16S rRNA gene sequencing, we found that SPC supports a dynamic sulfur cycle that is largely driven by sulfide-oxidizing microbial taxa, with contributions from smaller populations of sulfate-reducing and sulfur-disproportionating taxa. This preliminary characterization of SPC revealed an intriguing site in which to study geological and geochemical controls on microbial community composition and to expand our understanding of sulfur cycling in terrestrial environments.


Asunto(s)
Microbiota , Azufre , California , Hidrocarburos , Filogenia , ARN Ribosómico 16S/genética , Sulfuros
13.
Anal Chem ; 94(19): 7084-7091, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35512178

RESUMEN

Small-particle analysis is a highly promising emerging forensic tool for analysis of interdicted special nuclear materials. Integration of microstructural, morphological, compositional, and molecular impurity signatures could provide significant advancements in forensic capabilities. We have applied rapid, high-sensitivity, hard X-ray synchrotron chemical imaging to analyze impurity signatures in two differently fabricated fuel pellets from the 5th Collaborative Materials Exercise (CMX5) of the IAEA Nuclear Forensics International Working Group. The spatial distributions, chemical compositions, and morphological and molecular characteristics of impurities were evaluated using X-ray absorption near-edge structure (XANES) and X-ray fluorescence chemical imaging to discover principal impurities, their granularity, particle sizes, modes of occurrence (distinct grains vs incorporation in the UO2 lattice), and sources and mechanisms of incorporation. Differences in UO2+x stoichiometry were detected at the microscale in nominally identical UO2 ceramics (CMX5-A and CMX5-B), implying the presence of multiple UO2 host phases with characteristic microstructures and feedstock compositions. Al, Fe, Ni, W, and Zr impurities and integrated impurity signature analysis identified distinctly different pellet synthesis and processing methods. For example, two different Al, W, and Zr populations in the CMX5-B sample indicated a more complex processing history than the CMX5-A sample. K-edge XANES measurements reveal both metallic and oxide forms of Fe and Ni but with different proportions between each sample. Altogether, these observations suggest multiple sources of impurities, including fabrication (e.g., force-sieving) and feedstock (mineral oxides). This study demonstrates the potential of synchrotron techniques to integrate different signatures across length scales (angstrom to micrometer) to detect and differentiate between contrasting UO2 fuel fabrication techniques.

14.
Metallomics ; 14(6)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35512669

RESUMEN

Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.


Asunto(s)
Sincrotrones , Oligoelementos , Microscopía Fluorescente/métodos , Estudios Prospectivos , Espectrometría por Rayos X/métodos , Rayos X
15.
Sci Adv ; 8(1): eabj7190, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985950

RESUMEN

Transient appearances of oxygen have been inferred before the Great Oxygenation Event (GOE) [∼2.3 billion years (Ga) ago] based on redox-sensitive elements such as Mo and S­most prominently from the ∼2.5-Ga Mount McRae Shale in Western Australia. We present new spatially resolved data including synchrotron-based x-ray spectroscopy and secondary ion mass spectrometry to characterize the petrogenesis of the Mount McRae Shale. Sediments were primarily composed of organic matter and volcanic ash (a potential source of Mo), with U-Pb ages revealing extremely low sedimentation rates. Catagenesis created bedding-parallel microfractures, which subsequently acted as fluid pathways for metasomatic alteration and recent oxidative weathering. Our collective observations suggest that the bulk chemical datasets pointing toward a "whiff" of oxygen developed during postdepositional events. Nonzero Δ33S in trace-metal­poor, early diagenetic pyrite and the unusually enriched organic carbon at low sedimentation rates instead suggest that environmental oxygen levels were negligible ∼150 million years before the GOE.

16.
Dalton Trans ; 50(34): 11763-11774, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34346451

RESUMEN

Under anaerobic conditions, ferrous iron reacts with sulfide producing FeS, which can then undergo a temperature, redox potential, and pH dependent maturation process resulting in the formation of oxidized mineral phases, such as greigite or pyrite. A greater understanding of this maturation process holds promise for the development of iron-sulfide catalysts, which are known to promote diverse chemical reactions, such as H+, CO2 and NO3- reduction processes. Hampering the full realization of the catalytic potential of FeS, however, is an incomplete knowledge of the molecular and redox processess ocurring between mineral and nanoparticulate phases. Here, we investigated the chemical properties of iron-sulfide by cyclic voltammetry, Raman and X-ray absorption spectroscopic techniques. Tracing oxidative maturation pathways by varying electrode potential, nanoparticulate n(Fe2+S2-)(s) was found to oxidize to a Fe3+ containing FeS phase at -0.5 V vs. Ag/AgCl (pH = 7). In a subsequent oxidation, polysulfides are proposed to give a material that is composed of Fe2+, Fe3+, S2- and polysulfide (Sn2-) species, with its composition described as Fe2+1-3xFe3+2xS2-1-y(Sn2-)y. Thermodynamic properties of model compounds calculated by density functional theory indicate that ligand oxidation occurs in conjunction with structural rearrangements, whereas metal oxidation may occur prior to structural rearrangement. These findings together point to the existence of a metastable FeS phase located at the junction of a metal-based oxidation path between FeS and greigite (Fe2+Fe3+2S2-4) and a ligand-based oxidation path between FeS and pyrite (Fe2+(S2)2-).

17.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161271

RESUMEN

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese-over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant-a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Sedimentos Geológicos/química , Manganeso/análisis , Antioxidantes/metabolismo , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota , Oxidación-Reducción , Luz Solar , Agua
18.
Environ Sci Technol ; 55(2): 1057-1066, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33370096

RESUMEN

Ettringite is a naturally occurring mineral found in cementitious matrices that is known for its ability to incorporate environmentally mobile oxyanion contaminants. To better assess this immobilization mechanism for contaminants within cementitious waste forms intended for nuclear waste storage, this work explores how mixed oxyanion contaminants compete for ettringite incorporation and influence the evolving mineralogy. Ettringite was precipitated in the presence of TcO4-, IO3-, and/or CrO42-, known contaminants of concern to nuclear waste treatment, over pre-determined precipitation periods. Solution analyses quantified contaminant removal, and the collected solid was characterized using bulk and microprobe X-ray diffraction coupled with pair distribution function and microprobe X-ray fluorescence analyses. Results suggest that ≥96% IO3- is removed from solution, regardless of ettringite precipitation time or the presence of TcO4- or CrO42-. However, TcO4- removal remained <20%, was not significantly improved with longer ettringite precipitation times, and decreased to zero in the presence of IO3-. When IO3- is co-mingled with CrO42-, calcite and gypsum are formed as secondary mineral phases, which allows for oxyanion partitioning, e.g., IO3- incorporation into ettringite, and CrO42- incorporation into calcite. Results from this work exemplify the importance of competitive immobilization when assessing waste form performance and environmental risk of contaminant release.


Asunto(s)
Minerales , Residuos Radiactivos , Difracción de Rayos X
19.
Ann Neurol ; 89(3): 498-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244761

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS: We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS: Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION: Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.


Asunto(s)
Encéfalo/metabolismo , Hierro/metabolismo , Esclerosis Múltiple/metabolismo , Adolescente , Adulto , Anciano , Apoferritinas/metabolismo , Apoptosis , Encéfalo/inmunología , Encéfalo/patología , Niño , Proteínas del Sistema Complemento/metabolismo , Femenino , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Humanos , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Proteínas de la Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Oligodendroglía/metabolismo , Imagen Óptica , Espectrometría por Rayos X , Sincrotrones , Adulto Joven
20.
Analyst ; 145(22): 7242-7251, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32893271

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal genetic muscle wasting disorder, which currently has no cure. Supplementation with the drug taurine has been shown to offer therapeutic benefit in the mdx model for DMD, however the mechanism by which taurine protects dystrophic muscle is not fully understood. Mdx muscle is deficient in taurine, however it is not known if this deficiency occurs in the extracellular space, in other cells present in the tissue (such as immune cells) or in the myofibre itself. Likewise, the tissue location of taurine enrichment in taurine treated mdx muscle is not known. In this study we applied X-ray absorption near edge spectroscopy (XANES) at the sulfur K-edge in an imaging format to determine taurine distribution in muscle tissue. XANES is the only technique currently capable of imaging taurine directly in muscle tissue, at a spatial resolution approaching myocyte cell size (20-50 µm). Using a multi-modal approach of XANES imaging and histology on the same tissue sections, we show that in mdx muscle, it is the myofibres that are deficient in taurine, and taurine supplementation ameliorates this deficiency. Increasing the taurine content of mdx myofibres was associated with a decrease in myofibre damage (as shown by the percentage of intact myofibres) and inflammation. These data will help drive future studies to better elucidate the molecular mechanisms through which taurine protects dystrophic muscle; they also support the continued investigation of taurine as a therapeutic intervention for DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético , Sincrotrones , Taurina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA