RESUMEN
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Proteínas de Homeodominio , alfa Carioferinas , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Núcleo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Señales de Localización Nuclear , Tricomas/metabolismo , Tricomas/genéticaRESUMEN
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor (TF) from Arabidopsis , is a developmental regulator of specialized cell types in the epidermis. GL2 contains a putative monopartite nuclear localization sequence (NLS) partially overlapping with its homeodomain (HD). We demonstrate that NLS deletion or alanine substitution of its basic residues (KRKRKK) affects nuclear localization and results in a loss-of-function phenotype. Fusion of the predicted NLS (GTNKRKRKKYHRH) to the fluorescent protein EYFP is sufficient for its nuclear localization in roots and trichomes. The functional NLS is evolutionarily conserved in a distinct subset of HD-Zip IV members including PROTODERMAL FACTOR2 (PDF2). Despite partial overlap of the NLS with the HD, genetic dissection of the NLS from PDF2 indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plant tissues followed by mass spectrometry-based proteomics identified Importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Split-ubiquitin cytosolic yeast two-hybrid assays suggest interaction between GL2 and four IMPα isoforms from Arabidopsis. Direct interactions were verified in vitro by co-immunoprecipitation with recombinant proteins. IMPα triple mutants ( impα- 1,2,3 ) exhibit defects in EYFP:GL2 nuclear localization in trichomes but not in roots, consistent with tissue-specific and redundant functions of IMPα isoforms in Arabidopsis . Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 and other HD-Zip IV TFs in plants. One sentence summary: GLABRA2, a representative HD-Zip IV transcription factor from Arabidopsis , contains an evolutionarily conserved monopartite nuclear localization sequence that is recognized by Importin α for translocation to the nucleus, a process that is necessary for cell-type differentiation of the epidermis.