Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Rev Lett ; 132(22): 224002, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877904

RESUMEN

Charge separation behind moving water drops occurs in nature and technology. Yet, the physical mechanism has remained obscure, as charge deposition is energetically unfavorable. Here, we analyze how a part of the electric double layer charge remains on the dewetted surface. At the contact line, the chemical equilibrium of bound surface charge and diffuse charge in the liquid is influenced by the contact angle and fluid flow. We summarize the mechanism in an analytical model that compares well with experiments and simulations. It correctly predicts that charge separation increases with increasing contact angle and decreases with increasing velocity.

2.
Soft Matter ; 20(26): 5045-5052, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38639086

RESUMEN

Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid-liquid charge separation.

3.
J Phys Chem Lett ; 14(49): 11110-11116, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38052008

RESUMEN

Water drops on insulating hydrophobic substrates can generate electric potentials of kilovolts upon sliding for a few centimeters. We show that the drop saturation voltage corresponds to an amplified value of the solid-liquid surface potential at the substrate. The amplification is given by the substrate geometry, the drop and substrate dielectric properties, and the Debye length within the liquid. Next to enabling an easy and low-cost way to measure surface- and zeta- potentials, the high drop voltages have implications for energy harvesting, droplet microfluidics, and electrostatic discharge protection.

4.
Nat Commun ; 14(1): 1300, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894536

RESUMEN

The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the Li6.25Al0.25La3Zr2O12 garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.

5.
Small ; 19(23): e2207426, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36908090

RESUMEN

Understanding and controlling the nucleation and crystallization in solution-processed perovskite thin films are critical to achieving high in-plane charge carrier transport in field-effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2-thiopheneethylammonium tin iodide ((TEA)2 SnI4 ) perovskite FETs. It is revealed that the carboxylic group of PA is strongly coordinated to the spacer cation TEAI and [SnI6 ]4- framework in the perovskite precursor solution, inducing heterogeneous nucleation and lowering undesired oxidation of Sn2+ during the film formation. These factors contribute to a reduced defect density and improved film morphology, including lower surface roughness and larger grain size, resulting in overall enhanced transistor performance. The reduced defect density and decreased ion migration lead to a higher p-channel charge carrier mobility of 0.7 cm2 V-1 s-1 , which is more than a threefold increase compared with the control device. Temperature-dependent charge transport studies demonstrate a mobility of 2.3 cm2 V-1 s-1 at 100 K due to the diminished ion mobility at low temperatures. This result illustrates that the additive strategy bears great potential to realize high-performance Sn-based perovskite FETs.

6.
J Am Chem Soc ; 144(46): 21080-21087, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36354176

RESUMEN

The charge state of dielectric surfaces in aqueous environments is of fundamental and technological importance. Here, we study the influence of dissolved molecular CO2 on the charging of three chemically different surfaces (SiO2, Polystyrene, Perfluorooctadecyltrichlorosilane). We determine their charge state from electrokinetic experiments. We compare an ideal, CO2-free reference system to a system equilibrated against ambient CO2 conditions. In the reference system, the salt-dependent decrease of the magnitudes of ζ-potentials follows the expectations for a constant charge scenario. In the presence of CO2, the starting potential is lower by some 50%. The following salt-dependent decrease is weakened for SiO2 and inverted for the organic surfaces. We show that screening and pH-driven charge regulation alone cannot explain the observed effects. As an additional cause, we tentatively suggest dielectric regulation of surface charges due to a diffusively adsorbed thin layer of molecular CO2. The formation of such a dynamic layer, even at the hydrophilic and partially ionized silica surfaces, is supported by a minimal theoretical model and results from molecular simulations.


Asunto(s)
Dióxido de Silicio , Agua , Dióxido de Silicio/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos
7.
Langmuir ; 38(41): 12610-12616, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190842

RESUMEN

When a drop of a polar liquid slides over a hydrophobic surface, it acquires a charge. As a result, the surface charges oppositely. For applications such as the generation of electric energy, lubricant-infused surfaces (LIS) may be important because they show a low friction for drops. However, slide electrification on LIS has not been studied yet. Here, slide electrification on lubricant-infused surfaces was studied by measuring the charge generated by series of water drops sliding down inclined surfaces. As LIS, we used PDMS-coated glass with micrometer-thick silicone oil films on top. For PDMS-coated glass without lubricant, the charge for the first drop is highest. Then it decreases and saturates at a steady state charge per drop. With lubricant, the drop charge starts from 0, then it increases and reaches a maximum charge per drop. Afterward, it decreases again before reaching its steady-state value. This dependency is not a unique phenomenon for lubricant-infused PDMS; it also occurs on lubricant-infused micropillar surfaces. We attribute this dependency of charge on drop numbers to a change in surface conductivity and depletion of lubricant. These findings are helpful for understanding the charge process and optimizing solid-liquid nanogenerator devices in applications.

8.
Biophys J ; 121(18): 3411-3421, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986519

RESUMEN

The inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. The soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabilizes membranes and/or triggers membrane-fusion processes. These apparently contradicting functions have to be tightly controlled and separated spatiotemporally in chloroplasts and cyanobacteria. IM30's fusogenic activity depends on Mg2+ binding to IM30; yet, it still is unclear how Mg2+-loaded IM30 interacts with membranes and promotes membrane fusion. Here, we show that the interaction of Mg2+ with IM30 results in increased binding of IM30 to native, as well as model, membranes. Via atomic force microscopy in liquid, IM30-induced bilayer defects were observed in solid-supported bilayers in the presence of Mg2+. These structures differ dramatically from the membrane-stabilizing carpet structures that were previously observed in the absence of Mg2+. Thus, Mg2+-induced alterations of the IM30 structure switch the IM30 activity from a membrane-stabilizing to a membrane-destabilizing function, a crucial step in membrane fusion.


Asunto(s)
Synechocystis , Cloroplastos/metabolismo , Fusión de Membrana , Proteínas de la Membrana/química , Synechocystis/metabolismo , Tilacoides/química
9.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955639

RESUMEN

The self-assembly process of ß-D-glucose oligomers on the surface of cellulose Iß microfibril involves crystallization, and this process is analyzed herein, in terms of the length and flexibility of the oligomer chain, by means of molecular dynamics (MD) simulations. The characterization of this process involves the structural relaxation of the oligomer, the recognition of the cellulose I microfibril, and the formation of several hydrogen bonds (HBs). This process is monitored on the basis of the changes in non-bonded energies and the interaction with hydrophilic and hydrophobic crystal faces. The oligomer length is considered a parameter for capturing insight into the energy landscape and its stability in the bound form with the cellulose I microfibril. We notice that the oligomer-microfibril complexes are more stable by increasing the number of hydrogen bond interactions, which is consistent with a gain in electrostatic energy. Our studies highlight the interaction with hydrophilic crystal planes on the microfibril and the acceptor role of the flexible oligomers in HB formation. In addition, we study by MD simulation the interaction between a protofibril and the cellulose I microfibril in solution. In this case, the main interaction consists of the formation of hydrogen bonds between hydrophilic faces, and those HBs involve donor groups in the protofibril.


Asunto(s)
Celulosa , Microfibrillas , Celulosa/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular
10.
Small ; 18(34): e2200605, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35905481

RESUMEN

In organic electronics, local crystalline order is of critical importance for the charge transport. Grain boundaries between molecularly ordered domains are generally known to hamper or completely suppress charge transfer and detailed knowledge of the local electronic nature is critical for future minimization of such malicious defects. However, grain boundaries are typically hidden within the bulk film and consequently escape observation or investigation. Here, a minimal model system in form of monolayer-thin films with sub-nm roughness of a prototypical n-type organic semiconductor is presented. Since these films consist of large crystalline areas, the detailed energy landscape at single grain boundaries can be studied using Kelvin probe force microscopy. By controlling the charge-carrier density in the films electrostatically, the impact of the grain boundaries on charge transport in organic devices is modeled. First, two distinct types of grain boundaries are identified, namely energetic barriers and valleys, which can coexist within the same thin film. Their absolute height is found to be especially pronounced at charge-carrier densities below 1012 cm- 2 -the regime at which organic solar cells and light emitting diodes typically operate. Finally, processing conditions by which the type or energetic height of grain boundaries can be controlled are identified.

11.
Langmuir ; 38(19): 6224-6230, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35500291

RESUMEN

When a water drop slides over a hydrophobic surface, it usually acquires a positive charge and deposits the negative countercharge on the surface. Although the electrification of solid surfaces induced after contact with a liquid is intensively studied, the actual mechanisms of charge separation, so-termed slide electrification, are still unclear. Here, slide electrification is studied by measuring the charge of a series of water drops sliding down inclined glass plates. The glass was coated with hydrophobic (hydrocarbon/fluorocarbon) and amine-terminated silanes. On hydrophobic surfaces, drops charge positively while the surfaces charge negatively. Hydrophobic surfaces coated with a mono-amine (3-aminopropyltriethyoxysilane) lead to negatively charged drops and positively charged surfaces. When coated with a multiamine (N-(3-trimethoxysilylpropyl)diethylenetriamine), a gradual transition from positively to negatively charged drops is observed. We attribute this tunable drop charging to surface-directed ion transfer. Some of the protons accepted by the amine-functionalized surfaces (-NH2 with H+ acceptor) remain on the surface even after drop departure. These findings demonstrate the facile tunability of surface-controlled slide electrification.

12.
Soft Matter ; 18(8): 1628-1635, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35113106

RESUMEN

When neutral water drops impact and rebound from superhydrophobic surfaces, they acquire a positive electrical charge. To measure the charge, we analyzed the trajectory of rebounding drops in an external electric field by high-speed video imaging. Although this charging phenomenon has been observed in the past, little is known about the controlling parameters for the amount of drop charging. Here we investigate the relative importance of five of these potential variables: impact speed, drop contact area, contact line retraction speed, drop size, and type of surface. We additionally apply our previously reported model for sliding drop electrification to the case of impacting drops, suggesting that the two cases contain the same charge separation mechanism at the contact line. Both our experimental results and our theoretical model indicate that maximum contact area is the dominant control parameter for charge separation.

13.
Molecules ; 27(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35164241

RESUMEN

High resolution data from all-atom molecular simulations is used to parameterize a Martini 3 coarse-grained (CG) model of cellulose I allomorphs and cellulose type-II fibrils. In this case, elementary molecules are represented by four effective beads centred in the positions of O2, O3, C6, and O6 atoms in the D-glucose cellulose subunit. Non-bonded interactions between CG beads are tuned according to a low statistical criterion of structural deviation using the Martini 3 type of interactions and are capable of being indistinguishable for all studied cases. To maintain the crystalline structure of each single cellulose chain in the microfibrils, elastic potentials are employed to retain the ribbon-like structure in each chain. We find that our model is capable of describing different fibril-twist angles associated with each type of cellulose fibril in close agreement with atomistic simulation. Furthermore, our CG model poses a very small deviation from the native-like structure, making it appropriate to capture large conformational changes such as those that occur during the self-assembly process. We expect to provide a computational model suitable for several new applications such as cellulose self-assembly in different aqueous solutions and the thermal treatment of fibrils of great importance in bioindustrial applications.

14.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34835821

RESUMEN

Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr3) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained particles show good stability under dry conditions. This allows us to characterize these materials and their pure surfaces at the single-crystal level using time- and spatially resolved methods, without any influences of size-dependent effects. By optimizing the precursor for the aerosol process, we were able to eliminate any purification steps and use the materials as processed. In addition, we performed theoretical simulations to deepen the understanding of the underlying processes in the formation of the different crystal facets and their specific properties. The model system presented provides insights into the shape-related properties of MAPbBr3 single crystals and their directed but ligand-free synthesis.

15.
Commun Biol ; 3(1): 595, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087858

RESUMEN

Members of the phage shock protein A (PspA) family, including the inner membrane-associated protein of 30 kDa (IM30), are suggested to stabilize stressed cellular membranes. Furthermore, IM30 is essential in thylakoid membrane-containing chloroplasts and cyanobacteria, where it is involved in membrane biogenesis and/or remodeling. While it is well known that PspA and IM30 bind to membranes, the mechanism of membrane stabilization is still enigmatic. Here we report that ring-shaped IM30 super-complexes disassemble on membranes, resulting in formation of a membrane-protecting protein carpet. Upon ring dissociation, the C-terminal domain of IM30 unfolds, and the protomers self-assemble on membranes. IM30 assemblies at membranes have been observed before in vivo and were associated with stress response in cyanobacteria and chloroplasts. These assemblies likely correspond to the here identified carpet structures. Our study defines the thus far enigmatic structural basis for the physiological function of IM30 and related proteins, including PspA, and highlights a hitherto unrecognized concept of membrane stabilization by intrinsically disordered proteins.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Liposomas , Microscopía de Fuerza Atómica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Análisis Espectral , Synechocystis
16.
Langmuir ; 36(16): 4416-4431, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32239949

RESUMEN

Silicones are usually considered to be inert and, thus, not reactive with surfaces. Here we show that the most common silicone, methyl-terminated polydimethylsiloxane, spontaneously and stably bonds on glass-and any other material with silicon oxide surface chemistry-even at room temperature. As a result, a 2-5 nm thick and transparent coating, which shows extraordinary nonstick properties toward polar and nonpolar liquids, ice, and even super glue, is formed. Ten microliter drops of various liquids slide off a coated glass when the sample is inclined by less than 10°. Ice adhesion strength on a coated glass is only 2.7 ± 0.6 kPa, that is, more than 98% less than ice adhesion on an uncoated glass. The mechanically stable coating can be easily applied by painting, spraying, or roll-coating. Notably, the reaction does not require any excess energy or solvents, nor does it induce hazardous byproducts, which makes it an ideal option for environmentally sustainable surface modification in a myriad of technological applications.

17.
Soft Matter ; 15(43): 8667-8679, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31528956

RESUMEN

We investigate the charge separation caused by the motion of a water drop across a hydrophobic, insulating solid surface. Although the phenomenon of liquid charging has been consistently reported, these reports are primarily observational, results are difficult to reproduce, and no quantitative theory has been developed. In this work, we address both the experimental and theoretical sides of this problem. We reproducibly measure the charge gained by water drops sliding down a substrate, and we outline an analytical theory to describe this charging process. As an experimental system, we choose water drops moving down an inclined plane of glass hydrophobized with perfluoro octadecyltrichlorosilane (PFOTS). On this surface, sliding drops gain a positive charge. We observe charge saturation in three variables: increasing drop number, increasing interval between drops, and increasing drop-sliding length. These charge saturations indicate a limited "storage capacity" of the system, as well as a gradual discharging of the surface. To explain these results, we theorize that some fraction of the charge in the Debye layer is transferred to the surface rather than being neutralized as the drop passes. This fraction, or "transfer coefficient", is dependent on the electric potentials of surface and drop. All of our experimental charge saturation results can be interpreted based on the proposed theory. Given that nearly every surface in our lives comes in contact with water, this water-dependent surface charging may be a ubiquitous process that we can begin to understand through the proposed theory.

18.
J Phys Chem C Nanomater Interfaces ; 123(22): 13458-13466, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31205577

RESUMEN

We report that UV-ozone treatment of TiO2 anatase thin films is an efficient method to increase the conductance through the film by more than 2 orders of magnitude. The increase in conductance is quantified via conductive scanning force microscopy on freshly annealed and UV-ozone-treated TiO2 anatase thin films on fluorine-doped tin oxide substrates. The increased conductance of TiO2 anatase thin films results in a 2% increase of the average power conversion efficiency (PCE) of methylammonium lead iodide-based perovskite solar cells. PCE values up to 19.5% for mesoporous solar cells are realized. The additional UV-ozone treatment results in a reduced number of oxygen vacancies at the surface, inferred from X-ray photoelectron spectroscopy. These oxygen vacancies at the surface act as charge carrier traps and hinder charge extraction from the adjacent material. Terahertz measurements indicate only minor changes of the bulk conductance, which underlines the importance of UV-ozone treatment to control surface-based defects.

19.
J Phys Chem Lett ; 9(21): 6249-6256, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256640

RESUMEN

Charge-selective contact layers in perovskite solar cells influence the current density-voltage hysteresis, an effect related to ion migration in the perovskite. As such, fullerene-based electron transport layers (ETLs) suppress hysteresis by reducing the mobile ion concentration. However, the impact of different ETLs on the electronic properties of other constituent device layers remains unclear. In this Kelvin probe force microscopy study, we compared potential distributions of methylammonium lead iodide-based solar cells with two ETLs (planar TiO2 and C60-functionalized self-assembled monolayer) with different hysteretic behavior. We found significant changes in the potential distribution of the organic hole transport layer spiroMeOTAD, suggesting the formation of a neutral spiroMeOTAD/iodide interface due to a reaction between iodide with p-doped spiroMeOTAD in the TiO2 cell. Our results show that the ETL affects not only the mobile ion concentration and the recombination at the perovskite/ETL interface but also the resistance and capacitance of the spiroMeOTAD.

20.
Phys Rev Lett ; 121(4): 048002, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095942

RESUMEN

The work required to detach microparticles from fluid interfaces depends on the shape of the liquid meniscus. However, measuring the capillary force on a single microparticle and simultaneously imaging the shape of the liquid meniscus has not yet been accomplished. To correlate force and shape, we combined a laser scanning confocal microscope with a colloidal probe setup. While moving a hydrophobic microsphere (radius 5-10 µm) in and out of a 2-5 µm thick glycerol film, we simultaneously measured the force and imaged the shape of the liquid meniscus. In this way we verified the fundamental equations [D. F. James, J. Fluid Mech. 63, 657 (1974)JFLSA70022-112010.1017/S0022112074002126; A. D. Scheludko, A. D. Nikolov, Colloid Polymer Sci. 253, 396 (1975)] that describe the adhesion of particles in flotation, deinking of paper, the stability of Pickering emulsions and particle-stabilized foams. Comparing experimental results with theory showed, however, that the receding contact angle has to be applied, which can be much lower than the static contact angle obtained right after jump in of the particle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA