Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147543

RESUMEN

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas , Inflamación/tratamiento farmacológico , Isoformas de Proteínas , Antiinflamatorios/farmacología , Inmunidad Innata , Factores de Transcripción
2.
Inflammation ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971565

RESUMEN

Macrophage-derived lipid-laden foam cells from the subendothelium play a crucial role in the initiation and progression of atherosclerosis. However, the molecule mechanism that regulates the formation of foam cells is not completely understood. Here, we found that SLAMF7 was upregulated in mice bone marrow-derived macrophages and RAW264.7 cells stimulated with oxidized low-density lipoprotein (ox-LDL). SLAMF7 promoted ox-LDL-mediated macrophage lipid accumulation and M1-type polarization. SLAMF7 deficiency reduced serum lipid levels and improved the lesions area of carotid plaque and aortic arch in high-fat diet-fed ApoE-/- mice. In response to ox-LDL, SLAMF7 downregulated NR4A1 and upregulated RUNX3 through transcriptome sequencing analysis. Overexpression NR4A1 reversed SLAMF7-induced lipid uptake and M1 polarization via inhibiting RUNX3 expression. Furthermore, RUNX3 enhanced foam cell formation and M1-type polarization. Taken together, the study suggested that SLAMF7 play contributing roles in the pro-atherogenic effects by regulating NR4A1-RUNX3.

3.
J Control Release ; 360: 858-871, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473808

RESUMEN

Tumor-associated macrophages (TAMs) are the major immune cells infiltrating the tumor microenvironment (TME) and typically exhibit an immunosuppressive M2-like phenotype, which facilitates tumor growth and promotes resistance to immunotherapy. Additionally, tumor cells tend to express high levels of CD47, a "don't eat me" signal, that obstructs macrophage phagocytosis. Consequently, re-educating TAMs in combination with CD47 blockage is promising to trigger intense macrophage immune responses against tumors. As a toll-like receptor 7/8 agonist, resiquimod (R848) possesses the capacity to re-educate TAMs from M2 type to M1 type. We found that intratumoral administration of R848 synergistically improved the antitumor immunotherapeutic effect of CV1 protein (a SIRPα variant with high antagonism to CD47). However, the poor bioavailability and potential toxicity of this combo strategy remain a challenge. Here, a TAMs-targeted liposome (named: R-LS/M/CV1) co-delivering R848 and CV1 protein was constructed via decorating mannose on the liposomal surface. R-LS/M/CV1 exhibited high abilities of targeting, re-education and pro-phagocytosis of tumor cells to M2 macrophages in vitro. Intratumoral administration of R-LS/M/CV1 remarkedly eliminated tumor burden in the MC38 tumor model via repolarization of TAMs to M1 type, pro-phagocytosis of TAMs against tumors, and recruitment of tumor-infiltrating T cells. More encouragingly, due to the double targeting to TAMs and tumor cells of mannose and CV1 protein, R-LS/M/CV1 effectively accumulated at the tumor site, thereby not only remarkedly inhibiting tumors, but also exerting no hematological and histopathological toxicity when administered systemically. Our integrated strategy based on re-educating TAMs and CD47 blockade provides a promising approach to trigger macrophage immune responses against tumors for immunotherapy.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Antígeno CD47 , Manosa , Macrófagos/metabolismo , Fagocitosis , Neoplasias/metabolismo , Inmunoterapia , Microambiente Tumoral
4.
Sensors (Basel) ; 23(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299966

RESUMEN

Wheel burn can affect the wheel-rail contact state and ride quality. With long-term operation, it can cause rail head spalling or transverse cracking, which will lead to rail breakage. By analyzing the relevant literature on wheel burn, this paper reviews the characteristics, mechanism of formation, crack extension, and NDT methods of wheel burn. The results are as follows: Thermal-induced, plastic-deformation-induced, and thermomechanical-induced mechanisms have been proposed by researchers; among them, the thermomechanical-induced wheel burn mechanism is more probable and convincing. Initially, the wheel burns appear as an elliptical or strip-shaped white etching layer with or without deformation on the running surface of the rails. In the latter stages of development, this may cause cracks, spalling, etc. Magnetic Flux Leakage Testing, Magnetic Barkhausen Noise Testing, Eddy Current Testing, Acoustic Emission Testing, and Infrared Thermography Testing can identify the white etching layer, and surface and near-surface cracks. Automatic Visual Testing can detect the white etching layer, surface cracks, spalling, and indentation, but cannot detect the depth of rail defects. Axle Box Acceleration Measurement can be used to detect severe wheel burn with deformation.


Asunto(s)
Quemaduras , Humanos , Quemaduras/diagnóstico , Aceleración , Acústica , Plásticos , Probabilidad
5.
Cell Mol Immunol ; 20(5): 475-488, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36941318

RESUMEN

The activation of NLRC4 is a major host response against intracellular bacteria infection. However, NLRC4 activation after a host senses diverse stimuli is difficult to understand. Here, we found that the lncRNA LNCGM1082 plays a critical role in the activation of NLRC4. LNCGM1082 in macrophages affects the maturation of interleukin (IL)-1ß and pyroptotic cell death only after exposure to an NLRC4 ligand. Similar to NLRC4-/- mice, LNCGM1082-/- mice were highly sensitive to Salmonella Typhimurium (S. T) infection. LNCGM1082 deficiency in mouse or human macrophages inhibited IL-1ß maturation and pyroptosis. Mechanistically, LNCGM1082 induced the binding of PKCδ with NLRC4 in both mice and humans. In contrast, NLRC4 did not bind PKCδ in LNCGM1082-/- macrophages. The activity of the lncRNA LNCGM1082 induced by S. T may be mediated through TLR5 in the macrophages of both mice and humans. In summary, our data indicate that TLR5-mediated LNCGM1082 activity can promote the binding of PKCδ with NLRC4 to activate NLRC4 and induce resistance to bacterial infection.


Asunto(s)
ARN Largo no Codificante , Infecciones por Salmonella , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Receptor Toll-Like 5/metabolismo
6.
Front Oncol ; 12: 1012090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505776

RESUMEN

Inorganic pyrophosphatase (PPA1) encoded by PPA1 gene belongs to Soluble Pyrophosphatases (PPase) family and is expressed widely in various tissues of Homo sapiens, as well as significantly in a variety of malignancies. The hydrolysis of inorganic pyrophosphate (PPi) to produce orthophosphate (Pi) not only dissipates the negative effects of PPi accumulation, but the energy released by this process also serves as a substitute for ATP. PPA1 is highly expressed in a variety of tumors and is involved in proliferation, invasion, and metastasis during tumor development, through the JNK/p53, Wnt/ß-catenin, and PI3K/AKT/GSK-3ß signaling pathways. Because of its remarkable role in tumor development, PPA1 may serve as a biological target for adjuvant therapy of tumor malignancies. Further, PPA1 is a potential biomarker to predict survival in patients with cancer, where the assessment of its transcriptional regulation can provide an in-depth understanding. Herein, we describe the signaling pathways through which PPA1 regulates malignant tumor progression and provide new insights to establish PPA1 as a biomarker for tumor diagnosis.

7.
J Med Chem ; 65(21): 14326-14336, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36314537

RESUMEN

Bruton's tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcγ receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (13), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity. JNJ-64264681 demonstrated excellent oral efficacy in both cancer and autoimmune models with sustained in vivo target coverage amenable to once daily dosing and has advanced into human clinical studies to investigate safety and pharmacokinetics.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Lupus Eritematoso Sistémico/tratamiento farmacológico
8.
J Crohns Colitis ; 16(6): 963-977, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34964882

RESUMEN

BACKGROUND AND AIMS: Increased E. coli in the colon are related to the occurrence and development of multiple diseases. Chemokines are shown to possess potential antimicrobial activity, including against Gram-positive and -negative bacterial pathogens. We here investigated function[s] of chemokine CXCL9 expressed in the gut epithelial cells, and mechanism[s] of CXCL9 by which to kill E. coli. METHODS: We generated CXCL9fl/flpvillin-creT mice [pvillin-cre positive mice] and their control CXCL9fl/flpvillin-crewmice [pvillin-cre negative mice], and then employed a dextran sulphate sodium [DSS]-mediated colitis model to determine the sensitivity of CXCL9fl/flpvillin-creT mice. We analysed the composition of the gut microbiota by using 16S ribosomal RNA [V3-V4 variable region] sequencing and shotgun metagenomic analyses. We generated E. coli ΔFtsX [FtsX-depleted E. coli] and E. coli ΔaceE [aceE-depleted E. coli] by using a bacterium red recombining system to investigate the mechanism[s] of CXCL9 by which to kill E. coli. RESULTS: CXCL9 fl/flpvillin-creTmice were more sensitive to chemically induced colitis than their control littermates, CXCL9fl/flpvillin-crewmice. After DSS treatment, there were markedly increased gut E. coli [Escherichia-Shigella] in the colonic contents of CXCL9fl/flpvillin-creT mice as compared with control CXCL9fl/flpvillin-crew mice. The increased E. coli could promote colitis through NLRC4 and caspase 1/11-mediated IL-18, which was derived from gut epithelial cells. We finally demonstrated that CXCL9 expressed in gut epithelial cells could kill the overgrown E. coli. E. coli expressed Ftsx and PDHc subunits aceE. E.coliΔaceE but not E. coliΔFtsX were resistant to CXCL9-mediated killing. CONCLUSIONS: Gut epithelial cells-derived CXCL9 can kill the expanded E. coli through aceE, to remain gut homeostasis.


Asunto(s)
Colitis , Escherichia coli , Animales , Quimiocina CXCL9/efectos adversos , Colitis/genética , Colon/microbiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Homeostasis , Ratones , Ratones Endogámicos C57BL
9.
Sensors (Basel) ; 23(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36616817

RESUMEN

High-speed railway administrations are particularly concerned about safety and comfort issues, which are sometimes threatened by the differential deformation of substructures. Existing deformation-monitoring techniques are impractical for covering the whole range of a railway line at acceptable costs. Fortunately, the information about differential substructure deformation is contained in the dynamic inspection data of longitudinal level from comprehensive inspections trains. In order to detect potential differential deformations, an identification method, combining digital filtering, a convolutional neural network and infrastructure base information, is proposed. In this method, a low-pass filter is designed to remove short-waveband components of the longitudinal level. Then, a one-dimensional convolutional neural network is constructed to serve as a feature extractor from local longitudinal-level waveforms, and a binary classifier of potential differential deformations in place of the visual judgement of humans with profound expertise. Finally, the infrastructure base information is utilized to further classify the differential deformations into several types, according to the positional distribution of the substructures. The inspection data of four typical high-speed railways are selected to train and test the method. The results show that the convolutional neural network can identify differential substructure-deformations, with the precision, recall, accuracy and F1 score all exceeding 98% on the test data. In addition, four types of deformation can be further classified with the support of infrastructure base information. The proposed method can be used for directly locating adverse substructure deformations, and is also becoming a promising addition to existing deformation monitoring methods.


Asunto(s)
Ácido Aminosalicílico , Humanos , Citoplasma , Juicio , Redes Neurales de la Computación , Registros
10.
ACS Med Chem Lett ; 12(5): 782-790, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34055226

RESUMEN

Bruton's tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase that plays a critical role in the activation of B cells, macrophages, and osteoclasts. Given the key role of these cell types in the pathology of autoimmune disorders, BTK inhibitors have the potential to improve treatment outcomes in multiple diseases. Herein, we report the discovery and characterization of a novel potent and selective covalent 4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide BTK inhibitor chemotype. Compound 27 irreversibly inhibits BTK by targeting a noncatalytic cysteine residue (Cys481) for covalent bond formation. Compound 27 is characterized by selectivity for BTK, potent in vivo BTK occupancy that is sustained after it is cleared from systemic circulation, and dose-dependent efficacy at reducing joint inflammation in a rat collagen-induced arthritis model.

11.
Inflamm Bowel Dis ; 27(8): 1302-1315, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-33501933

RESUMEN

BACKGROUND: A dysfunctional gut epithelial barrier allows the augmented permeation of endotoxins, luminal antigens, and bacteria into the bloodstream, causing disease. The maintenance of gut epithelial barrier integrity may be regulated by multiple factors. Herein we analyze the role of leucine-rich repeat-containing protein 19 (LRRC19) in regulating the permeability of the gut epithelial barrier. METHODS: We utilized Lrrc19 knockout (KO) mice and clinical samples through transmission electron, intestinal permeability assay, Western blot, and immunofluorescence staining to characterize the role of LRRC19 in the permeability of the gut epithelial barrier. RESULTS: We found that LRRC19, which is expressed in gut epithelial cells, impairs gut barrier function. Transmission electron micrographs revealed a tighter junction and narrower gaps in the colon epithelium cells in LRRC19 KO mice. There were lower levels of serum lipopolysaccharide and 4 kDa-fluorescein isothiocyanate-dextran after gavage in LRRC19 KO mice than in wild-type mice. We found that LRRC19 could reduce the expression of zonula occludens (ZO)-1, ZO-3, and occludin in the colonic epithelial cells. The decreased expression of ZO-1, ZO-3, and occludin was dependent on degrading protein kinase C (PKC) ζ and PKCι/λ through K48 ubiquitination by LRRC19. The expression of LRRC19 was also negatively correlated with ZO-1, ZO-3, occludin, PKCζ, and PKCι/λ in human colorectal cancers. CONCLUSIONS: The protein LRRC19 can promote the permeability of the gut epithelial barrier through degrading PKC ζ and PKCι/λ to reduce the expression of ZO-1, ZO-3, and occludin.


Asunto(s)
Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Proteína Quinasa C , Receptores de Superficie Celular/metabolismo , Uniones Estrechas , Proteína de la Zonula Occludens-1/metabolismo , Animales , Ratones , Ratones Noqueados , Permeabilidad , Proteína Quinasa C/metabolismo , Proteínas de la Zonula Occludens
12.
Cell Discov ; 6(1): 87, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33298871

RESUMEN

Macrophages are mainly divided into two populations, which play a different role in physiological and pathological conditions. The differentiation of these cells may be regulated by transcription factors. However, it is unclear how to modulate these transcription factors to affect differentiation of these cells. Here, we found that lncLy6C, a novel ultraconserved lncRNA, promotes differentiation of Ly6Chigh inflammatory monocytes into Ly6Clow/neg resident macrophages. We demonstrate that gut microbiota metabolites butyrate upregulates the expression of lncLy6C. LncLy6C deficient mice had markedly increased Ly6Chigh pro-inflammatory monocytes and reduced Ly6Cneg resident macrophages. LncLy6C not only bound with transcription factor C/EBPß but also bound with multiple lysine methyltransferases of H3K4me3 to specifically promote the enrichment of C/EBPß and H3K4me3 marks on the promoter region of Nr4A1, which can promote Ly6Chigh into Ly6Cneg macrophages. As a result, lncLy6C causes the upregulation of Nr4A1 to promote Ly6Chigh inflammatory monocytes to differentiate into Ly6Cint/neg resident macrophages.

13.
Commun Biol ; 3(1): 483, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879431

RESUMEN

The expansion of Enterobacteriaceae, such as E. coli is a main characteristic of gut inflammation and is related to multiple human diseases. However, how to control these E. coli overgrowth is not well understood. Here, we demonstrate that gut complement factor D (CFD) plays an important role in eliminating E. coli. Increased E. coli, which could stimulate inflammatory macrophages to induce colitis, were found in the gut of CFD deficient mice. We also showed that gut Reg4, which is expressed in gut epithelial cells, stimulated complement-mediated attack complexes to eliminate E. coli. Reg4 deficient mice also had increased E. coli. The dominant E. coli were isolated from colitis tissues of mice and found to be sensitive to both CFD- and Reg4-mediated attack complexes. Thus, gut Reg4- and CFD-mediated membrane attack complexes may maintain gut homeostasis by killing inflammatory E. coli.


Asunto(s)
Factor D del Complemento/metabolismo , Escherichia coli/crecimiento & desarrollo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Colitis/patología , Colon/patología , Factor D del Complemento/deficiencia , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Sulfato de Dextran , Femenino , Tracto Gastrointestinal/patología , Inflamación/patología , Integrasas/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Pancreatitis/deficiencia , Proteínas Asociadas a Pancreatitis/metabolismo
14.
iScience ; 21: 474-489, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31707260

RESUMEN

Inflammatory macrophages play a critical role in gut and extra-gut inflammatory disorders, which may be promoted through the dysbiosis of gut microbiota. However, it is poorly understood how gut microbiota affect inflammatory macrophages. Here, we found that increased Escherichia coli (E. coli) in inflamed colon may induce inflammatory macrophages in gut and extra-gut tissues. These E. coli are different from other commensal and pathogenic E. coli in genomic components and also in ability to induce inflammatory responses. Dominant E. coli from colitic tissues induce gut inflammatory macrophages through a regulating network consisted of IL-18, IFN-γ, IL-12, and IL-22 in gut tissues. These E. coli also directly activate macrophages. Cytosolic inflammasome components PCKδ, NLRC4, caspase8, and caspase1/11 are involved in E. coli-mediated activation in both gut epithelial cells and macrophages. These disclose a novel mechanism for how dysbiosis of gut microbiota in colitis cause inflammatory macrophages related to multiple diseases.

15.
Commun Biol ; 2: 171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098404

RESUMEN

Gut mucosal layers are crucial in maintaining the gut barrier function. Gut microbiota regulate homeostasis of gut mucosal layer via gut immune cells such as RORγt (+) IL-22(+) ILC3 cells, which can influence the proliferation of mucosal cells and the production of mucin. However, it is unclear how gut microbiota execute this regulation. Here we show that lactobacilli promote gut mucosal formation by producing L-Ornithine from arginine. L-Ornithine increases the level of aryl hydrocarbon receptor ligand L-kynurenine produced from tryptophan metabolism in gut epithelial cells, which in turn increases RORγt (+)IL-22(+) ILC3 cells. Human REG3A transgenic mice show an increased proportion of L-Ornithine producing lactobacilli in the gut contents, suggesting that gut epithelial REG3A favors the expansion of L-Ornithine producing lactobacilli. Our study implicates the importance of a crosstalk between arginine metabolism in Lactobacilli and tryptophan metabolism in gut epithelial cells in maintaining gut barrier.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Lactobacillus/inmunología , Ornitina/biosíntesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Vida Libre de Gérmenes , Homeostasis , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Moco/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
16.
Medicine (Baltimore) ; 95(25): e3953, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27336892

RESUMEN

This study aimed to determine the therapeutic effect of radiofrequency combined with low-dose collagenase injected into the disc interior via an anterior cervical approach for cervical intervertebral disc herniation.Forty-three patients (26-62-year old; male/female ratio: 31/12) with cervical intervertebral disc herniation received radiofrequency combined with 60 to 100 U of collagenase, injected via an anterior cervical approach. The degree of nerve function was assessed using the current Japanese Orthopaedic Association (JOA) scoring system at 3 and 12 months postoperation. A visual analogue scale (VAS) was used to evaluate the degree of pain preoperation and 7 days postoperation. The preoperative and 3 month postoperative protrusion areas were measured and compared via magnetic resonance imaging (MRI) and picture archiving and communication systems (PACS).Compared with the preoperative pain scores, the 7-day postoperative pain was significantly reduced (P <0.01). The excellent and good rates of nerve function amelioration were 93.0% and 90.7% at 3 and 12 months postoperation, respectively, which was not significantly different. Twenty-seven cases exhibited a significantly reduced protrusion area (P <0.01) at 3 months postoperation. No serious side effects were noted.To our knowledge, this is the first study to demonstrate that the use of radiofrequency combined with low-dose collagenase injection into the disc interior via an anterior cervical approach is effective and safe for the treatment of cervical intervertebral disc herniation.


Asunto(s)
Ablación por Catéter/métodos , Vértebras Cervicales , Colagenasas/administración & dosificación , Desplazamiento del Disco Intervertebral/terapia , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Estudios de Seguimiento , Humanos , Inyecciones , Desplazamiento del Disco Intervertebral/diagnóstico , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
17.
Bioorg Med Chem Lett ; 24(23): 5489-92, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25455490

RESUMEN

During the course of our efforts toward the discovery of human histamine H4 antagonists from a series of 2-aminiopyrimidines, it was noted that a 6-trifluoromethyl group dramatically reduced affinity of the series toward the histamine H4 receptor. This observation was further investigated by synthesizing a series of ligands that varied in pKa of the pyrimidine derived H4 ligands by over five orders of magnitude and the effect on histamine H4 affinity. This trend was then extended to the discovery of C-linked piperidinyl-2-amino pyridines as histamine H4 receptor antagonists.


Asunto(s)
Antagonistas de los Receptores Histamínicos/farmacocinética , Piridinas/química , Pirimidinas/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Histamínicos/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/uso terapéutico , Humanos , Ligandos , Estructura Molecular , Receptores Histamínicos H4
18.
J Med Chem ; 51(14): 4150-69, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18588282

RESUMEN

LTA 4H is a ubiquitously distributed 69 kDa zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. As a hydrolase, LTA 4H stereospecifically catalyzes the transformation of the unstable epoxide LTA 4 to the diol LTB 4, a potent chemoattractant and activator of neutrophils and a chemoattractant of eosinophils, macrophages, mast cells, and T cells. Inhibiting the formation of LTB 4 is expected to be beneficial in the treatment of inflammatory diseases such as inflammatory bowel disease (IBD), asthma, and atherosclerosis. We developed a pharmacophore model using a known inhibitor manually docked into the active site of LTA 4H to identify a subset of compounds for screening. From this work we identified a series of benzoxazole, benzthiazole, and benzimidazole inhibitors. SAR studies resulted in the identification of several potent inhibitors with an appropriate cross-reactivity profile and excellent PK/PD properties. Our efforts focused on further profiling JNJ 27265732, which showed encouraging efficacy in a disease model relevant to IBD.


Asunto(s)
Antiinflamatorios/farmacología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Catálisis , Perros , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Relación Estructura-Actividad
20.
Mol Cancer Ther ; 7(3): 492-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18347137

RESUMEN

B-RAF mutations have been identified in the majority of melanoma and a large fraction of colorectal and papillary thyroid carcinoma. Drug discovery efforts targeting mutated B-RAF have yielded several interesting molecules, and currently, three compounds are undergoing clinical evaluation. Inhibition of B-RAF in animal models leads to a slowing of tumor growth and, in some cases, tumor reduction. Described within is a novel series of diaryl imidazoles with potent, single-digit nanomolar, anti-B-RAF activity. One compound from this series has been detailed here and has been shown to block B-RAF(V600E)-dependent extracellular signal-regulated kinase 1/2 phosphorylation in SK-MEL-28 melanoma cells as well as soft agar colony formation and proliferation. Importantly, interleukin-8 (IL-8) was identified by quantitative real-time PCR and ELISA as a product of the elevated mitogen-activated protein kinase signaling in these cells. Plasma concentrations of IL-8 in mice bearing melanoma xenografts were significantly reduced following exposure to B-RAF inhibitors. Taken together, these data suggest that IL-8 could serve as a tractable clinical biomarker.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Interleucina-8/antagonistas & inhibidores , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Humanos , Imidazoles/farmacología , Interleucina-8/biosíntesis , Interleucina-8/genética , Melanoma/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA