Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ren Fail ; 46(2): 2374449, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973429

RESUMEN

OBJECTIVES: Geriatric Nutritional Risk Index (GNRI) is a new and simple index recently introduced to assess nutritional status, and its predictive value for clinical outcomes has been demonstrated in patients with chronic kidney disease. However, the association between the GNRI and prognosis has not been evaluated so far in patients with acute kidney injury (AKI), especially in those receiving continuous renal replacement therapy (CRRT). METHODS: A total of 1096 patients with severe AKI initiating CRRT were identified for inclusion in this retrospective observational study. Patients were divided into three groups according to GNRI tertiles, with tertile 1 as the reference. The outcomes of interest were the 28- and 90-days of all-cause mortality. The associations between GNRI and clinical outcomes were estimated using multivariate Cox proportional hazards model analysis. RESULTS: The overall mortality rates at 28- and 90-days were 61.6% (675/1096) and 71.5% (784/1096), respectively. After adjusting for multiple confounding factors, GNRI was identified as an independent prognostic factor for 28-days all-cause mortality (HR, 0.582; 95% CI, 0.467-0.727; p < .001 for tertile 3 vs. tertile 1) as well as 90-days all-cause mortality (HR, 0.540; 95% CI, 0.440-0.661; p < .001 for tertile 3 vs. tertile 1). The observed inverse associations were robust across subgroup analysis, and were more pronounced in elderly patients over 65 years of age. Finally, incorporating GNRI in a model with established risk factors might significantly improve its predictive power for the short-term death. CONCLUSIONS: GNRI is considered to be a useful prognostic factor in patients with severe AKI initiating CRRT, especially in elderly patients.


Asunto(s)
Lesión Renal Aguda , Evaluación Geriátrica , Evaluación Nutricional , Estado Nutricional , Humanos , Estudios Retrospectivos , Femenino , Anciano , Masculino , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/terapia , Anciano de 80 o más Años , Pronóstico , Persona de Mediana Edad , Factores de Riesgo , Modelos de Riesgos Proporcionales , Medición de Riesgo , Terapia de Reemplazo Renal Continuo , Índice de Severidad de la Enfermedad
2.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947127

RESUMEN

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Asunto(s)
Ciego , Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad , Animales , Conejos , Dieta Alta en Grasa/efectos adversos , Ciego/microbiología , Ciego/metabolismo , Obesidad/metabolismo , Obesidad/microbiología , Interacciones Microbiota-Huesped , Metagenómica , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Redes Reguladoras de Genes , Masculino , Perfilación de la Expresión Génica
3.
BMC Genomics ; 25(1): 645, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943081

RESUMEN

BACKGROUND: Wenchang chickens are one of the most popular local chicken breeds in the Chinese chicken industry. However, the low feed efficiency is the main shortcoming of this breed. Therefore, there is a need to find a more precise breeding method to improve the feed efficiency of Wenchang chickens. In this study, we explored important candidate genes and variants for feed efficiency and growth traits through genome-wide association study (GWAS) analysis. RESULTS: Estimates of genomic heritability for growth and feed efficiency traits, including residual feed intake (RFI) of 0.05, average daily food intake (ADFI) of 0.21, average daily weight gain (ADG) of 0.24, body weight (BW) at 87, 95, 104, 113 days of age (BW87, BW95, BW104 and BW113) ranged from 0.30 to 0.44. Important candidate genes related to feed efficiency and growth traits were identified, such as PLCE1, LAP3, MED28, QDPR, LDB2 and SEL1L3 genes. CONCLUSION: The results identified important candidate genes for feed efficiency and growth traits in Wenchang chickens and provide a theoretical basis for the development of new molecular breeding technology.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Fenotipo , Alimentación Animal , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
4.
BMC Vet Res ; 20(1): 246, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849831

RESUMEN

BACKGROUND: Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS: The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS: These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Emulsionantes , Metabolismo de los Lípidos , Animales , Pollos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Emulsionantes/farmacología , Alimentación Animal/análisis , Masculino , Femenino , Dieta/veterinaria , Hígado/metabolismo , Hígado/efectos de los fármacos
6.
Front Microbiol ; 15: 1387957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784815

RESUMEN

The host genes play a crucial role in shaping the composition and structure of the gut microbiome. Red deer is listed as an endangered species by the International Union for the Conservation of Nature, and its pilose antlers have good medicinal value. Hybridization can lead to heterosis, resulting in increased pilose antler production and growth performance in hybrid deer. However, the role of the gut microbiome in hybrid deer remains largely unknown. In this study, alpha and beta diversity analysis showed that hybridization altered the composition and structure of the gut microbiome of the offspring, with the composition and structure of the hybrid offspring being more similar to those of the paternal parents. Interestingly, the LefSe differential analysis showed that there were some significantly enriched gut microbiome in the paternal parents (such as g_Prevotellaceae UCG-003, f_Bacteroidales RF16 group; Ambiguous_taxa, etc.) and the maternal parents (including g_Alistipes, g_Anaerosporobacter, etc.), which remained significantly enriched in the hybrid offspring. Additionally, the hybrid offspring exhibited a significant advantage over the parental strains, particularly in taxa that can produce short-chain fatty acids, such as g_Prevotellaceae UCG-003, g_Roseburia, g_Succinivibrio, and g_Lachnospiraceae UCG-006. Similar to bacterial transmission, metagenomic analysis showed that some signaling pathways related to pilose antler growth ("Wnt signaling pathway," "PI3K Akt signaling pathway," "MAPK signaling pathway") were also enriched in hybrid red deer after hybridization. Furthermore, metabolomic analysis revealed that compared with the paternal and maternal parents, the hybrid offspring exhibited significant enrichment in metabolites related to "Steroid hormone biosynthesis," "Tryptophan metabolism," "Valine, leucine and isoleucine metabolism," and "Vitamin B metabolism." Notably, the metagenomic analysis also showed that these metabolic pathways were significantly enriched in hybrid deer. Finally, a correlation analysis between the gut microbiome and metabolites revealed a significant positive correlation between the enriched taxa in hybrid deer, including the Bacteroidales RF16 group, Prevotellaceae, and Succinivibrio, and metabolites, such as 7α-hydroxytestosterone, L-kynurenine, indole, L-isoleucine, and riboflavin. The study contributes valuable data toward understanding the role of the gut microbiome from red deer in hybridization and provides reference data for further screening potential probiotics and performing microbial-assisted breeding that promotes the growth of red deer pilose antlers and bodies, development, and immunity.

7.
Front Microbiol ; 15: 1298703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633702

RESUMEN

Antimicrobial peptides could inhibit the growth of harmful bacteria and promote the growth performance in weaned piglets. Here, we investigated the effects of dietary supplementation with cecropin antimicrobial peptides (CAP) on growth performance, diarrhea rate, intestinal health in nursery Hainan piglets. For this, 120 healthy nursery Hainan male piglets (13.29 ± 0.29 kg, 44 days old) were randomly divided into 5 groups-a control (CON) group (fed a basal diet), an antibiotic control (AC) group (fed a basal diet supplemented with 250 mg/kg colistin sulfate); and 3 experimental groups (provided the basal diet supplemented with 250, 500, or 1,000 mg/kg CAP). Pre-feeding lasted 7 days and the official period lasted 40 days. The results showed that compared with the CON group, dietary supplementation of 500 mg/kg CAP had significantly increased the average daily gain (ADG, p < 0.05), while the feed conversion ratio (FCR) and diarrhea rate were markedly reduced (p < 0.05), serum total protein (TP), albumin, IgA, IgM, and globulin concentrations were significantly increased (p < 0.05), where serum aspartate aminotransferase (AST) level was significantly reduced (p < 0.05), and it also increased the villus height and the villus height-to-crypt depth ratio in the jejunum, reduced the serum D-lactic acid concentrations and diamine oxidase activity, and increased the expression level of ZO-1 and occludin in the jejunum and ileum (p < 0.05), the relative abundance of Firmicutes, Lactobacillus, and Limoslactobacillus in the colon were increased (p < 0.05), whereas that of Streptococcus and Escherichia-Shigella were reduced (p < 0.05). These results indicated that dietary supplementation with 500 mg/kg CAP could improve the growth performance, reduce the diarrhea rate, improve the serum immunity, intestinal health of nursery pigs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38447057

RESUMEN

Kidney aging accelerates the progression of various acute and chronic kidney diseases and can also induce pathological changes in other organs throughout the body. Circular RNAs (circRNAs) have been demonstrated to play a vital role in aging and age-related diseases. However, biological functions and the underlying molecular mechanism of circRNAs in kidney aging remain largely unclear. Uncovering the functions of circRNAs in kidney aging and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human aging. Here, we report the important role of circVmn2r1 in the progression of kidney aging. We found that circVmn2r1 was one of the top expressed circRNAs in mouse kidney by RNA sequencing and was significantly upregulated in 24-month-old mouse kidney compared to 3-month-old. More importantly, we demonstrated that overexpression of circVmn2r1 promoted kidney aging in senescence-accelerated mouse prone 8 mice. Cellular assays with mouse kidney tubular epithelium (TCMK-1) cells under both gain-of-function and loss-of-function conditions demonstrated that circVmn2r1 inhibited proliferation and promoted senescence, whereas miR-223-3p counteracted these effects. Mechanistic analysis demonstrated that circVmn2r1 acted as a miR-223-3p sponge to relieve the repressive effect of miR-223-3p on its target NLRP3, which we proved could inhibit proliferation and promote senescence of TCMK-1 cells. Our results indicate that circVmn2r1 promotes kidney aging through acting as a miR-223-3p sponge, consequently upregulating NLRP3 expression, and can be a valuable diagnostic marker and an important therapeutic target for kidney aging.


Asunto(s)
Envejecimiento , Riñón , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Circular , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Senescencia Celular/genética , Riñón/patología , Riñón/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Circular/genética , ARN Circular/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
9.
J Cell Mol Med ; 28(6): e18176, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454800

RESUMEN

Senescent kidney can lead to the maladaptive repairment and predispose age-related kidney diseases. Here, we explore the renal anti-senescence effect of a known kind of drug, sodium-dependent glucose transporters 2 inhibitor (SGLT2i). After 4 months intragastrically administration with dapagliflozin on senescence-accelerated mouse prone 8 (SAMP8) strain mice, the physiologically effects (lowering urine protein, enhancing glomerular blood perfusion, inhibiting expression of senescence-related biomarkers) and structural changes (improving kidney atrophy, alleviating fibrosis, decreasing glomerular mesangial proliferation) indicate the potential value of delaying kidney senescence of SGLT2i. Senescent human proximal tubular epithelial (HK-2) cells induced by H2 O2 also exhibit lower senescent markers after dapagliflozin treatment. Further mechanism exploration suggests LTBP2 have the great possibility to be the target for SGLT2i to exert its renal anti-senescence role. Dapagliflozin down-regulate the LTBP2 expression in kidney tissues and HK-2 cells with senescent phenotypes. Immunofluorescence staining show SGLT2 and LTBP2 exist colocalization, and protein-docking analysis implies there is salt-bridge formation between them; these all indicate the possibility of weak-interaction between the two proteins. Apart from reducing LTBP2 expression in intracellular area induced by H2 O2 , dapagliflozin also decrease the concentration of LTBP2 in cell culture medium. Together, these results reveal dapagliflozin can delay natural kidney senescence in non-diabetes environment; the mechanism may be through regulating the role of LTBP2.


Asunto(s)
Enfermedades Renales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Humanos , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Riñón/metabolismo , Glucósidos/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Enfermedades Renales/metabolismo , Proteínas de Unión a TGF-beta Latente
10.
Microbiol Spectr ; 12(4): e0389423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488394

RESUMEN

Recently, Enterococcus has been shown to have gastric protective functions, and the mechanisms by which Enterococcus modulates gastric function are still being investigated. Herein, we investigated how Enterococcus faecium (Efm) and E. faecium-derived extracellular vesicles (EVs) (EfmEVs) exert protective effect against ethanol-induced gastric injury by investigating the effect of EfmEVs on gastric mucosal ulcer scoring, histological lesion, mucosal glycoprotein production, acidity, anti-oxidative function, and inflammatory responses in rat. Pretreatment with Efm showed significant reduction of ethanol-induced gastric injury, as evidenced by the lowering of ulcer index, histological lesion, gastric pH, and inflammatory responses and the enhancement of mucosal glycoprotein production and anti-oxidative function. Further functional studies on three bioactive components [inactivated Efm, EfmEVs (EVs), and EV-free supernatants] of the bacterial culture showed that EVs are mostly responsible for the gastroprotective effect. Moreover, EV secretion is beneficial for the gastroprotective effect of Efm. Hence, EVs mediated the protective effect of Efm against ethanol-induced gastric injury by lowering inflammatory responses and enhancing anti-oxidative function and may be a potent anti-inflammatory and anti-oxidative strategy to alleviate hyperinflammatory gastrointestinal tract conditions.IMPORTANCEThis study indicated that Enterococcus faecium provided a protective effect against rat gastric injury, which involved improvement of the mucosal glycoprotein production, anti-oxidative function, and inflammatory responses. Furthermore, we confirmed that three bioactive components (inactivated Efm, extracellular vesicles, and EV-free supernatants) of E. faecium culture also contributed to the gastroprotective effect. Importantly, E. faecium-derived EVs showed an effective impact for the gastroprotective effect.


Asunto(s)
Enterococcus faecium , Úlcera Gástrica , Ratas , Animales , Estrés Oxidativo , Úlcera , Etanol/toxicidad , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Úlcera Gástrica/patología , Glicoproteínas
11.
BMC Vet Res ; 20(1): 13, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184589

RESUMEN

Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.


Asunto(s)
Panax , Animales , Pollos , Peso Corporal , Ciego , Diarrea/veterinaria
12.
BMC Genom Data ; 24(1): 77, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097986

RESUMEN

BACKGROUND: Goat products have played a crucial role in meeting the dietary demands of people since the Neolithic era, giving rise to a multitude of goat breeds globally with varying characteristics and meat qualities. The primary objective of this study is to pinpoint the pivotal genes and their functions responsible for regulating muscle fiber growth in the longissimus dorsi muscle (LDM) through DNA methylation modifications in Hainan black goats and hybrid goats. METHODS: Whole-genome bisulfite sequencing (WGBS) was employed to scrutinize the impact of methylation on LDM growth. This was accomplished by comparing methylation differences, gene expression, and their associations with growth-related traits. RESULTS: In this study, we identified a total of 3,269 genes from differentially methylated regions (DMR), and detected 189 differentially expressed genes (DEGs) through RNA-seq analysis. Hypo DMR genes were primarily enriched in KEGG terms associated with muscle development, such as MAPK and PI3K-Akt signaling pathways. We selected 11 hub genes from the network that intersected the gene sets within DMR and DEGs, and nine genes exhibited significant correlation with one or more of the three LDM growth traits, namely area, height, and weight of loin eye muscle. Particularly, PRKG1 demonstrated a negative correlation with all three traits. The top five most crucial genes played vital roles in muscle fiber growth: FOXO3 safeguarded the myofiber's immune environment, FOXO6 was involved in myotube development and differentiation, and PRKG1 facilitated vasodilatation to release more glucose. This, in turn, accelerated the transfer of glucose from blood vessels to myofibers, regulated by ADCY5 and AKT2, ultimately ensuring glycogen storage and energy provision in muscle fibers. CONCLUSION: This study delved into the diverse methylation modifications affecting critical genes, which collectively contribute to the maintenance of glycogen storage around myofibers, ultimately supporting muscle fiber growth.


Asunto(s)
Cabras , Fosfatidilinositol 3-Quinasas , Animales , Humanos , Cabras/genética , Fibras Musculares Esqueléticas , Glucosa , Glucógeno , Factores de Transcripción Forkhead
13.
Food Res Int ; 174(Pt 1): 113646, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986487

RESUMEN

In the Wenchang chicken (WC) feeding process, copra meal is often added to improve chicken quality. To determine the effect of feeding with copra meal on the flavor formation of WCs, the experimental subjects were fed with 4.5 % and 7.5 % copra meal, and the control group was fed without copra meal. The electronic nose combined with gas chromatography-olfactometry mass spectrometry (GC-O-MS) was used to identify the volatile compounds from the samples. Compared with the control group, the pH of chickens fed copra meal was significantly decreased (P < 0.05) after slaughter. Aldehydes and alcohols were the main volatile compounds in muscle, among which hexanal and 1-octen-3-ol were the highest. Thirty-two and thirty-six compounds were identified in breast muscle and drumstick muscle, respectively. Twelve new volatile compounds were added, including 1-octanol, butanal, 1-heptanol, 3-ethylbenzaldehyde, 2,2-dimethylpentanal, hexanoic acid, 3-heptanone, 2,5-heptanedione, 2-ethylfuran, 2-propylfuran, 2-ethynylpyridine, and 1,2,4,5-tetrazine. The types and contents of volatile compounds in drumstick muscle increased with an increasing proportion of copra meal in the diet. In summary, the addition of copra meal changed the quality of WCs and increased the types and contents of volatile compounds. This study provides a reference for understanding the flavor profile of WC fed copra meal.


Asunto(s)
Alcoholes , Pollos , Humanos , Animales , Olfatometría/métodos , Alcoholes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Heptanol/análisis
15.
Adv Biol (Weinh) ; 7(10): e2300199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688360

RESUMEN

Delaying kidney senescence process will benefit renal physiologic conditions, and prompt the kidney recovering from different pathological states. The renal anti-senescence effects of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and metformin have been proven in diabetic settings, but the roles of each one and combination of two drugs in natural kidney aging process remain undefined and deserve further research. Senescence-accelerated mouse prone 8 (SAMP8) were orally administered dapagliflozin, metformin, and a combination of them for 16 weeks. Dapagliflozin exhibits better effects than metformin in lowering senescence related markers, and the combination therapy shows the best results. In vitro experiments demonstrate the same results that the combination of dapagliflozin and metformin can exert a better anti-senescence effect. Blood metabolites detection in vivo shows dapagliflozin mainly leads to the change of blood metabolites enriched in choline metabolism, and metformin tends to induce change of blood metabolites enriched in purine metabolism. In conclusion, the results suggest dapagliflozin may have a better renal anti-senescence effect than metformin in non-diabetes environment, and the combination of the two drugs can strengthen the effect. The two drugs can lead to different blood metabolites alteration, which may lead to different systemic effects.

16.
Endocrinology ; 164(9)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486737

RESUMEN

Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) and white adipose tissue (WAT) thermogenesis has emerged as an attractive tool for antiobesity. Although miR-143 has been reported to be associated with BAT thermogenesis, its role remains unclear. Here, we found that miR-143 had highest expression in adipose tissue, especially in BAT. During short-term cold exposure or CL316,243 was injected, miR-143 was markedly downregulated in BAT and subcutaneous WAT (scWAT). Moreover, knockout (KO) of miR-143 increases the body temperature of mice upon cold exposure, which may be due to the increased thermogenesis of BAT and scWAT. More importantly, supplementation of miR-143 in BAT of KO mice can inhibit the increase in body temperature in KO mice. Mechanistically, spleen tyrosine kinase was revealed for the first time as a new target of miR-143, and deletion of miR-143 facilitates fatty acid uptake in BAT. In addition, we found that brown adipocytes can promote fat mobilization of white adipocytes, and miR-143 may participate in this process. Meanwhile, we demonstrate that inactivation of adenylate cyclase 9 (AC9) in BAT inhibits thermogenesis through AC9-PKA-AMPK-CREB-UCP1 signaling pathway. Overall, our results reveal a novel function of miR-143 on thermogenesis, and a new functional link of the BAT and WAT.


Asunto(s)
Ácidos Grasos no Esterificados , MicroARNs , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
17.
Front Microbiol ; 14: 1177947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465027

RESUMEN

Mammalian gut microbiota plays an important role in the host's nutrient metabolism, growth, and immune regulation. Hybridization can enable a progeny to acquire superior traits of the parents, resulting in the hybridization advantage. However, studies on the effects of hybridization on the pigs' gut microbiota are lacking. Therefore, this study used multi-omics technologies to compare and analyze the gut microbiota of the primary wild boar and its offspring. The 16S rRNA gene sequencing results revealed that the gut microbiota of F4 exhibited a host-like dominance phenomenon with a significant increase in the abundance of Lactobacillus and Bifidobacterium. The beta diversity of Duroc was significantly different from those of F0, F2, and F4; after the host hybridization, the similarity of the beta diversity in the progeny decreased with the decrease in the similarity of the F0 lineage. The metagenomic sequencing results showed that the significantly enriched metabolic pathways in F4, such as environmental, circulatory system, fatty acid degradation adaptation, and fatty acid biosynthesis, were similar to those in F0. Moreover, it also exhibited similar significantly enriched metabolic pathways as those in Duroc, such as carbohydrate metabolism, starch and sucrose metabolism, starch-degrading CAZymes, lactose-degrading CAZymes, and various amino acid metabolism pathways. However, the alpha-amylase-related KOs, lipid metabolism, and galactose metabolism in F4 were significantly higher than those in Duroc and F0. Non-targeted metabolome technology analysis found that several metabolites, such as docosahexaenoic acid, arachidonic acid, and citric acid were significantly enriched in the F4 pigs as compared to those in F0. Based on Spearman correlation analysis, Lactobacillus and Bifidobacterium were significantly positively correlated with these metabolites. Finally, the combined metagenomic and metabolomic analysis suggested that the metabolic pathways, such as valine, leucine, and isoleucine biosynthesis and alanine aspartate and glutamate metabolism were significantly enriched in F4 pigs. In conclusion, the gut microbiota of F4 showed a similar host "dominance" phenomenon, which provided reference data for the genetics and evolution of microbiota and the theory of microbial-assisted breeding.

18.
Animals (Basel) ; 13(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174601

RESUMEN

This study was to investigate the effects of dietary supplementation with putrescine on the growth performance and meat quality of chickens. A total of 480 eighty-day-old female Wenchang chickens were randomly assigned into four groups, with 8 replications per group and 15 animals per replicate. The chickens in the control group (Con) were fed a basal diet; the 3 experimental groups were fed a basal diet with 0.01%, 0.03%, and 0.05% putrescine, respectively. The experiment lasted for 40 days. The results showed that dietary supplementation with 0.05% putrescine increased (p < 0.05) the final body weight and average daily weight gain, and decreased the ratio of feed intake to the body weight gain of Wenchang chickens. Dietary supplementation with putrescine decreased the concentrations of putrescine, spermidine, and spermine in serum (p < 0.05). The contents of methionine, phenylalanine, lysine, aspartic acid, tyrosine, total essential amino acids, and total amino acids in breast muscle were higher (p < 0.05) in 0.03% and 0.05% groups than those in Con group. However, the contents of undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, arachidic acid, docosanoic acid, tricosanic acid, lignoceric acid, erucic acid, cis-11,14,17-eicosatrienoate, linoleic acid, and total n-6 monounsaturated fatty acids in breast muscle were lower (p < 0.05) in 0.03% and 0.05% groups than those in Con group. In addition, putrescine supplementation decreased (p < 0.05) the ratio of n-6/n-3 polyunsaturated fatty acids in breast meat. Overall, dietary supplementation with 0.05% putrescine enhanced the growth performance and meat quality of Wenchang chickens.

19.
Front Microbiol ; 14: 1081629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065128

RESUMEN

Introduction: A lower prevalence of dental caries (hereafter termed "caries") has been observed in children with dental extrinsic black stain (EBS). Methods: We investigated the epidemiologic characterization of EBS and explored the possible role of the oral microbiome (OM) and gut microbiome (GM) in EBS formation and caries prevention. In an epidemiologic survey, 2,675 children aged 3-6 years were included. Thirty-eight of these children (7 children had both caries and EBS, 10 had EBS only, 11 had caries only, and 10 were healthy children) were recruited for 16S rRNA sequencing and collection of samples of supragingival plaque and feces. Collected plaque samples were divided into four groups: BCP (EBS+, caries+), BP (EBS+, caries-), CP (EBS-, caries+), and P (EBS-, caries-). Fecal samples were also divided into four groups: BCF (EBS+, caries+), BF (EBS+, caries-), CF (EBS-, caries+), and F (EBS-, caries-). Results: EBS was observed in 12.10% of this population. Children with EBS had a significantly reduced prevalence of caries and a lower mean value of decayed-missing-filled teeth (dmft; p < 0.01). According to analyses of dental plaque, the P group had the most complex microbiome. The BCP group exhibited greater operational taxonomic unit (OTU) richness but a reduced evenness compared with the BP group, and the CP group showed greater OTU richness than the BP group. At the genus level, higher abundance of Actinomyces and Cardiobacterium species was observed in the BCP group. Higher abundance of Lautropia and Pesudopropionibacteriumin species was observed in the BP group compared with P and CP groups, respectively (p < 0.05). Veillonella species were significantly more common in P and CP groups than in BP groups, whereas Porphyromonas and Fusobacterium species were more common in the CP group (p < 0.05). With regard to the GM, the CF group exhibited greater OTU diversity than the BF group. The GM in the BCF group exhibited the most complex relationships across all fecal groups. GM groups could be distinguished by various unique biomarkers, such as Escherichia and Shigella species in the BCF group, Agathobacter and Ruminococcus species in the CF group, Lactobacillus species in the BF group, and Roseburia species in the F group. Our results suggest that EBS is a possible protective factor against early-childhood caries. Dental plaque and the GM may be relevant to EBS in primary dentition.

20.
Trop Anim Health Prod ; 54(6): 392, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414702

RESUMEN

In the present study, we aimed to explore the interactive effects of high temperature (HT) and dietary crude protein (CP) levels on nitrogen (N) excretion, fecal characteristics, and growth performance of broilers. A total of 288 broilers (Arbor Acres) were divided into six groups with eight replicates (six broilers per replicate). Two temperatures (ambient temperature: AT, 23 °C; HT: 28 ~ 32 ~ 28 °C) and three diets (CP: 14.90%, 18.18%, or 21.19%, with equal amounts of essential amino acids) were examined in a 2 × 3 factorial design. The experiment arrangement was from 4 to 6 weeks of age. The results showed that HT led to a significant decrease in the N excretion (P < 0.0001), average daily feed intake (P < 0.0001), and weight gain of broilers (P < 0.0001), while it markedly increased the fecal pH (P = 0.015), fecal moisture (P = 0.0014), uric acid (UA) contents (P = 0.0018), and feed/gain ratio (P < 0.0001). A low CP diet significantly decreased the N excretion (P < 0.001), fecal pH (P = 0.016), fecal moisture (P < 0.0001), and UA contents (P < 0.0001), while it markedly increased the feed/gain ratio (P < 0.001). In conclusion, HT had a negative impact on the fecal characteristics and growth performance of broilers but showed positive effects on N excretion. Moreover, decreased CP levels had a positive effect on the N excretion and fecal characteristics in broilers.


Asunto(s)
Pollos , Nitrógeno , Animales , Nitrógeno/metabolismo , Alimentación Animal/análisis , Temperatura , Proteínas en la Dieta/metabolismo , Dieta con Restricción de Proteínas/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA