Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; : e202400655, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327547

RESUMEN

Rubi fructus (Fupenzi) is the Chinese medicine for both food and medicine, which can be used to tonify kidney yang, strengthen essence and shrink urine, but its effective components and mechanism are not clear. In this paper, the active components of Fupenzi in vivo and in vitro were detected. Adenine was used to replicate the model of kidney yang deficiency, and organ index, biochemical index and histopathology were used to evaluate the effect of different doses of Fupenzi on tonifying kidney yang. Metabonomics technique was used to analyze the metabolic regulation mechanism of Fupenzi in improving kidney yang deficiency syndrome. The results showed that 61 chemical constituents of Fupenzi were identified in vitro. A total of 51 chemical components were identified, including 30 prototype components and 21 metabolic components, which may be theeffective components of Fupenzi. The results of pharmacodynamics showed that Fupenzi can effectively improve the symptom of kidney-yang deficiency, which may be mainly through primary bile acid biosynthesis, linoleic acid metabolism, steroid hormone biosynthesis, ß-alanine metabolism, glutathione metabolism, porphyrin and chlorophyll metabolism, unsaturated fatty acid biosynthesis, arachidonic acid metabolism, arginine and proline metabolism and other metabolic pathways to improve adenine-induced metabolic disorders in rats with kidney-yang deficiency syndrome.

2.
Synth Syst Biotechnol ; 9(4): 828-833, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39099750

RESUMEN

The microbial genome remains a huge treasure trove for the discovery of diverse natural products. Saccharopolyspora erythraea NRRL23338, the industry producer of erythromycin, has a dozen of biosynthetic gene clusters whose encoding products are unidentified. Heterologous expression of one of the polyketide clusters pks7 in Streptomyces albus B4 chassis resulted in the characterization of its function responsible for synthesizing both 6-methylsalicyclic acid and 6-ethylsalicyclic acid. Meanwhile, two new 6-ethylsalicyclic acid ester derivatives were isolated as shunt metabolites. Their structures were identified by comprehensive analysis of MS and NMR experiments. Putative functions of genes within the pks7 BGC were also discussed.

3.
Bioresour Technol ; 411: 131354, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182792

RESUMEN

The rose fragrance molecule 2-phenylethanol (2-PE) has huge market demand in the cosmetics, food and pharmaceutical industries. However, current 2-PE synthesis methods do not meet the efficiency market requirement. In this study, CRISPR-Cas9-related metabolic engineering strategies were applied to Yarrowia lipolytica for the de novo biosynthesis of 2-PE. Initially, overexpressing exogenous feedback-resistant EcAROGfbr and EcPheAfbr increased 2-PE production to 276.3 mg/L. Subsequently, the ylARO10 and ylPAR4 from endogenous genes were enhanced with the multi-copies to increase the titer to 605 mg/L. Knockout of ylTYR1 and enhancement of shikimate pathway by removing the precursor metabolic bottleneck and overexpressing the genes ylTKT, ylARO1, and ylPHA2 resulted in a significant increase of the 2-PE titer to 2.4 g/L at 84 h, with the yield of 0.06 g/gglu, which is the highest yield for de novo synthesis in yeast. This study provides a valuable precedent for the efficient biosynthesis of shikimate pathway derivatives.


Asunto(s)
Ingeniería Metabólica , Alcohol Feniletílico , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Ingeniería Metabólica/métodos , Alcohol Feniletílico/metabolismo , Sistemas CRISPR-Cas , Ácido Shikímico/metabolismo
4.
J Agric Food Chem ; 72(31): 17499-17509, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39045837

RESUMEN

The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in ß-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.


Asunto(s)
Proteínas Bacterianas , Ingeniería Metabólica , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Fermentación , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
5.
J Ethnopharmacol ; 335: 118612, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047883

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY: Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS: An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS: ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1ß, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION: Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.


Asunto(s)
Proteína HMGB1 , Ratones Endogámicos C57BL , Infarto del Miocardio , FN-kappa B , Saponinas , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , Saponinas/farmacología , FN-kappa B/metabolismo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Triterpenos/farmacología
6.
Appl Environ Microbiol ; 90(7): e0083824, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38904409

RESUMEN

Precursor supply plays a significant role in the production of secondary metabolites. In Streptomyces bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in Streptomyces albus B4, which binds directly to the promoter region of the neighboring pccAB operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to pccAB is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between pccAB and bkdR. When bkdR was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in S. albus B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into S. albus B4. When supplemented with propionate to provide propionyl-CoA, the novel bkdR-deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium. IMPORTANCE: In this study, we describe a pccAB operon involved in short-chain acyl-CoA carboxylation in S. albus B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for S. albus chassis engineering to enhance heterologous polyketide yield.


Asunto(s)
Proteínas Bacterianas , Combinación de Medicamentos , Macrólidos , Streptomyces , Macrólidos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Operón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Acilcoenzima A/metabolismo
7.
J Biochem ; 176(1): 43-54, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38444151

RESUMEN

Protection against oxidative stress is a vital defense mechanism for Mycobacterium tuberculosis within the host. However, few transcription factors that control bacterial antioxidant defense are known. Here, we present evidence that SdrR, encoded by the MSMEG_5712 (Ms5712) gene, functions as an oxidative stress response regulator in Mycobacterium smegmatis. SdrR recognizes an 11-bp motif sequence in the operon's upstream regulatory region and negatively regulates the expression of short-chain dehydrogenases/reductases (SDR). Overexpressing sdrR inhibited SDR expression, which rendered the strain oxidative more stress-sensitive. Conversely, sdrR knockout alleviates SDR repression, which increases its oxidative stress tolerance. Thus, SdrR responds to oxidative stress by negatively regulating sdr expression. Therefore, this study elucidated an underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.


Asunto(s)
Antioxidantes , Proteínas Bacterianas , Mycobacterium smegmatis , Estrés Oxidativo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Antioxidantes/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Operón
8.
Artículo en Inglés | MEDLINE | ID: mdl-38315596

RESUMEN

Magnetic resonance imaging (MRI) is an essential diagnostic tool that suffers from prolonged scan time. To alleviate this limitation, advanced fast MRI technology attracts extensive research interests. Recent deep learning has shown its great potential in improving image quality and reconstruction speed. Faithful coil sensitivity estimation is vital for MRI reconstruction. However, most deep learning methods still rely on pre-estimated sensitivity maps and ignore their inaccuracy, resulting in the significant quality degradation of reconstructed images. In this work, we propose a Joint Deep Sensitivity estimation and Image reconstruction network, called JDSI. During the image artifacts removal, it gradually provides more faithful sensitivity maps with high-frequency information, leading to improved image reconstructions. To understand the behavior of the network, the mutual promotion of sensitivity estimation and image reconstruction is revealed through the visualization of network intermediate results. Results on in vivo datasets and radiologist reader study demonstrate that, for both calibration-based and calibrationless reconstruction, the proposed JDSI achieves the state-of-the-art performance visually and quantitatively, especially when the acceleration factor is high. Additionally, JDSI owns nice robustness to patients and autocalibration signals.

9.
J Agric Food Chem ; 72(8): 4217-4224, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38356383

RESUMEN

Vanillic acid (VA), as a plant-derived phenolic acid compound, has widespread applications and good market prospects. However, the traditional production process cannot meet market demand. In this study, Pseudomonas putida KT2440 was used for de novo biosynthesis of VA. Multiple metabolic engineering strategies were applied to construct these P. putida-based cell factories, including the introduction of a Hs-OMTopt, engineering the cofactor S-adenosylmethionine supply pathway through the overexpression of metX and metH, reforming solubility of Hs-OMTopt, increasing a second copy of Hs-OMTopt, and the optimization of the fermentation medium. The resulting strain, XCS17, de novo biosynthesized 5.4 g/L VA from glucose in a fed-batch fermentation system; this is the highest VA production titer reported up to recently. This study showed that P. putida KT2440 is a robust platform for achieving the effective production of phenolic acids.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Vanílico/metabolismo , Ingeniería Metabólica , Hidroxibenzoatos/metabolismo
10.
ACS Synth Biol ; 12(8): 2455-2462, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37450901

RESUMEN

Osthole is a coumarin compound found in the traditional Chinese medicine Cnidium monnieri. Extensive studies have shown that osthole exhibits many medicinal properties, and recently, researchers have found that it possesses potent airway-relaxation activity by inhibiting phosphodiesterase 4D activity, making it a potential novel bronchodilator that does not target ß2-adrenoceptors for asthma treatment. Here, we report the complete biosynthesis of osthole in engineered yeast. We created an umbelliferone (UMB)-producing strain by reconstituting the complete UMB pathway in yeast. We found that coumarin synthase (COSY) is essential for the conversion of 2',4'-dihydroxycinnamoyl-CoA into UMB in yeast; this conversion has been treated as a spontaneous step in previously reported UMB-producing microbials. By introducing downstream prenyltransferase and methyltransferase genes and addressing problems such as protein expression and cofactor supply to fulfill the downstream steps, complete biosynthesis of osthole was achieved. Finally, through metabolic engineering, to ensure precursor supply, and the debugging of rate-limited steps, the osthole titer reached 108.10 mg/L in shake flasks and 255.1 mg/L in fed-batch fermentation. Our study is the first to produce osthole using engineered microbes, providing a blueprint for the supply of plant-derived osthole via microbial fermentation, which will remove the barriers of resource limitations for osthole-based drug development.


Asunto(s)
Cumarinas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cumarinas/metabolismo , Cumarinas/farmacología , Fermentación , Transducción de Señal , Ingeniería Metabólica
11.
Bioresour Technol ; 385: 129421, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392967

RESUMEN

Scutellarin drugs have been recognized as a key item in the national development of essential clinical emergency drugs for treating cardiovascular and cerebrovascular diseases; therefore, the market demand for scutellarin is growing rapidly. Microbial synthesis based on synthetic biology is a promising method for industrial production of scutellarin. In this study, the highest reported scutellarin titer in the shake flask of 703.01 ± 4.83 mg/L was achieved in Yarrowia lipolytica through the systematic metabolic engineering modifications, including screening for the optimal flavone-6-hydroxylase-cytochrome P450 reductase combination SbF6H-ATR2 to enhance P450 enzyme activity, increasing the copy numbers of rate-limiting enzyme genes, overexpressing ZWF1 and GND1 to increase NADPH supply, enhancing the supply of p-coumaric acid and uridine diphosphate glucose, and introducing the heterologous gene VHb to enhance oxygen supply. This study has significant implications for the industrial production of scutellarin and other valuable flavonoids in green economies.


Asunto(s)
Ingeniería Metabólica , Yarrowia , Ingeniería Metabólica/métodos , Yarrowia/genética , Yarrowia/metabolismo
12.
Bioresour Technol ; 381: 129129, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37146696

RESUMEN

Polydatin, a glycosylated derivative of resveratrol, has better structural stability and biological activity than resveratrol. Polydatin is the extract of Polygonum cuspidatum, which has various pharmacological effects. Owing to its Crabtree-negative characteristics and high supply of malonyl-CoA, Yarrowia lipolytica was selected to produce polydatin. Initially, the resveratrol synthetic pathway was established in Y. lipolytica. By enhancing the shikimate pathway flow, redirecting carbon metabolism, and increasing the copies of key genes, a resveratrol yield of 487.77 mg/L was obtained. In addition, by blocking the degradation of polydatin, its accumulation was successfully achieved. Finally, by optimizing the glucose concentration and supplementing with two nutritional marker genes, a high polydatin yield of 6.88 g/L was obtained in Y. lipolytica, which is the highest titer of polydatin produced in a microbial host to date. Overall, this study demonstrates that Y. lipolytica has great potential for glycoside synthesis.


Asunto(s)
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica , Resveratrol/metabolismo
13.
Biomolecules ; 13(2)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830769

RESUMEN

The CRISPR-Cas system is an adaptive immune system for many bacteria and archaea to defend against foreign nucleic acid invasion, and this system is conserved in the genome of M. tuberculosis (Mtb). Although the CRISPR-Cas system-mediated immune defense mechanism has been revealed in Mtb, the regulation of cas gene expression is poorly understood. In this study, we identified a transcription factor, CasR (CRISPR-associated protein repressor, encoded by Rv1776c), and it could bind to the upstream DNA sequence of the CRISPR-Cas gene cluster and regulate the expression of cas genes. EMSA and ChIP assays confirmed that CasR could interact with the upstream sequence of the csm6 promoter, both in vivo and in vitro. Furthermore, DNA footprinting assay revealed that CasR recognized a 20 bp palindromic sequence motif and negatively regulated the expression of csm6. In conclusion, our research elucidates the regulatory effect of CasR on the expression of CRISPR-associated genes in mycobacteria, thus providing insight into gene expression regulation of the CRISPR-Cas system.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Archaea/genética , Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo
14.
J Magn Reson ; 343: 107301, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36126552

RESUMEN

Bias field is one of the main artifacts that degrade the quality of magnetic resonance images. It introduces intensity inhomogeneity and affects image analysis such as segmentation. In this work, we proposed a deep learning approach to jointly estimate bias field and reconstruct uniform image. By modeling the quality degradation process as the product of a spatially varying field and a uniform image, the network was trained on 800 images with true bias fields from 12 healthy subjects. A network structure of bias field estimation and uniform image reconstruction was designed to compensate for the intensity loss. To further evaluate the benefit of bias field correction, a quantitative analysis was made on image segmentation. Experimental results show that the proposed BFCNet improves the image uniformity by 8.3% and 10.1%, the segmentation accuracy by 4.1% and 6.8% on white and grey matter in T2-weighted brain images. Moreover, BFCNet outperforms the state-of-the-art traditional methods and deep learning methods on estimating bias field and preserving image structure, and BFCNet is robust to different levels of bias field and noise.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Encéfalo/diagnóstico por imagen
15.
Front Bioeng Biotechnol ; 10: 936487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923572

RESUMEN

ß-Lactam antibiotics are widely used anti-infection drugs that are traditionally synthesized via a chemical process. In recent years, with the growing demand for green alternatives, scientists have turned to enzymatic synthesis. Penicillin G acylase (PGA) is the second most commercially used enzyme worldwide with both hydrolytic and synthetic activities toward antibiotics, which has been used to manufacture the key antibiotic nucleus on an industrial level. However, the large-scale application of PGA-catalyzed antibiotics biosynthesis is still in the experimental stage because of some key limitations, such as low substrate concentration, unsatisfactory yield, and lack of superior biocatalysts. This paper systematically reviews the strategies adopted to improve the biosynthesis of ß-lactam antibiotics by adjusting the enzymatic property and manipulating the reaction system in recent 20 years, including mining of enzymes, protein engineering, solvent engineering, in situ product removal, and one-pot reaction cascade. These advances will provide important guidelines for the future use of enzymatic synthesis in the industrial production of ß-lactam antibiotics.

16.
Biomolecules ; 12(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35883466

RESUMEN

Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.


Asunto(s)
Endopeptidasas , Péptido Hidrolasas , Enzimas Desubicuitinizantes , Proteínas , Ubiquitinación
17.
Microb Cell Fact ; 21(1): 120, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717184

RESUMEN

BACKGROUND: Erythromycin A (Er A) has a broad antibacterial effect and is a source of erythromycin derivatives. Methylation of erythromycin C (Er C), catalyzed by S-adenosyl-methionine (SAM)-dependent O-methyltransferase EryG, is the key final step in Er A biosynthesis. Er A biosynthesis, including EryG production, is regulated by the phosphate response factor PhoP and the nitrogen response factor GlnR. However, the regulatory effect of these proteins upon S-adenosyl-methionine synthetase (MetK) production is unknown. RESULTS: In this study, we used bioinformatics approaches to identify metK (SACE_3900), which codes for S-adenosyl-methionine synthetase (MetK). Electrophoretic mobility shift assays (EMSAs) revealed that PhoP and GlnR directly interact with the promoter of metK, and quantitative PCR (RT-qPCR) confirmed that each protein positively regulated metK transcription. Moreover, intracellular SAM was increased upon overexpression of either phoP or glnR under phosphate or nitrogen limited conditions, respectively. Finally, both the production of Er A and the transformation ratio from Er C to Er A increased upon phoP overexpression, but surprisingly, not upon glnR overexpression. CONCLUSIONS: Manipulating the phosphate and nitrogen response factors, PhoP and GlnR provides a novel strategy for increasing the yield of SAM and the production of Er A in Saccharopolyspora erythraea .


Asunto(s)
Saccharopolyspora , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eritromicina , Regulación Bacteriana de la Expresión Génica , Metionina/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , S-Adenosilmetionina/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
18.
Front Microbiol ; 13: 818881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516432

RESUMEN

Antimicrobial resistance (AMR) represents one of the main challenges in Tuberculosis (TB) treatment. Investigating the genes involved in AMR and the underlying mechanisms holds promise for developing alternative treatment strategies. The results indicate that dehydroquinate synthase (DHQS) regulates the susceptibility of Mycobacterium bovis BCG to first-line anti-TB drug streptomycin. Perturbation of the expression of aroB encoding DHQS affects the susceptibility of M. bovis BCG to streptomycin. Purified DHQS impairs in vitro antibacterial activity of streptomycin, but did not hydrolyze or modify streptomycin. DHQS directly binds to streptomycin while retaining its own catalytic activity. Computationally modeled structure analysis of DHQS-streptomycin complex reveals that DHQS binds to streptomycin without disturbing native substrate binding. In addition, streptomycin treatment significantly induces the expression of DHQS, thus resulting in DHQS-mediated susceptibility. Our findings uncover the additional function of DHQS in AMR and provide an insight into a non-canonical resistance mechanism by which protein hijacks antibiotic to reduce the interaction between antibiotic and its target with normal protein function retained.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35432557

RESUMEN

Objective: To investigate the preventive effects of Ilex cornuta aqueous extract (ICAE) on high-fat diet (HFD)-induced fatty liver of mice and its mechanisms. Materials and Methods: Twenty-six male KM (Kunming) mice were divided into 3 groups, including the control group (n = 9), fed with normal diet; HFD group (n = 9), fed with HFD; ICAE + HFD group (n = 8), fed with HFD and administered with ICAE (3 g·kg-1·d-1) at the same time for 10 weeks. Body weight, liver weight, intra-abdominal and subcutaneous fat weight, serum triglyceride (TG), total cholesterol (TC), and blood glucose were determined to evaluate the preventive effects of ICAE on obesity. The average 24 h food consumption of the mice was monitored for 5 times in the 9th week of the experiment to investigate the effects of ICAE on food intake. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were assayed to observe the influences of HFD and ICAE on liver function. HE staining was adopted to observe the influence of ICAE on the morphology of adipose tissue and liver tissue. Hepatic TG and TC content assay and oil red O staining were used to evaluate the influences of ICAE on HFD-induced fatty liver, and the protein expression of peroxisome proliferator-activated receptors γ (PPARγ) and adipose differentiation-related protein (ADRP) in liver were examined by immunoblotting. Results: ICAE treatment significantly reduced the increase of body weight, intra-abdominal, and subcutaneous fat and liver weight induced by HFD (P < 0.001), but has no influence on food intake; ICAE treatment attenuated the elevation of serum TG, TC, and glucose, as well as serum ALT and AST (P < 0.01, P < 0.05, P < 0.001) and dramatically decreased the content of TG in liver (P < 0.01), but has no influence on hepatic TC content. HE staining and oil red O staining showed that ICAE significantly reduced HFD-induced white adipocyte hypertrophy and significantly inhibited lipid accumulation in liver. Immunoblotting showed that the protein levels of PPARγ and ADRP were significantly increased by HFD induction, which can be dramatically reduced by ICAE treatment (P < 0.05, P < 0.0001). Conclusion: ICAE has preventive effects on HFD-induced obesity and fatty liver in mice, exerted beneficial effects upon HFD-induced hepatic injury. The preventive effects of ICAE on fatty liver are concerned with the downregulation of PPARγ and ADRP protein expression in liver.

20.
Biosens Bioelectron ; 207: 114205, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339074

RESUMEN

The detection of mine-based explosives poses a serious threat to the lives of deminers, and carcinogenic residues may cause severe environmental pollution. Whole-cell biosensors that can detect on-site in dangerous or inaccessible environments have great potential to replace conventional methods. Synthetic biology based on engineering modularity serves as a new tool that could be used to engineer microbes to acquire desired functions through artificial design and precise regulation. In this study, we designed artificial genetic circuits in Escherichia coli MG1655 by reconstructing the transcription factor YhaJ-based system to detect explosive composition 2,4-dinitrotoluene (2,4-DNT). These genetic circuits were optimized at the transcriptional, translational, and post-translational levels. The binding affinity of the transcription factor YhaJ with inducer 2,4-DNT metabolites was enhanced via directed evolution, and several activator binding sites were inserted in sensing yqjF promoter (PyqjF) to further improve the output level. The optimized biosensor PyqjF×2-TEV-(mYhaJ + GFP)-Ssr had a maximum induction ratio of 189 with green fluorescent signal output, and it could perceive at least 1 µg/mL 2,4-DNT. Its effective and robust performance was verified in different water samples. Our results demonstrate the use of synthetic biology tools to systematically optimize the performance of sensors for 2,4-DNT detection, that lay the foundation for practical applications.


Asunto(s)
Técnicas Biosensibles , Sustancias Explosivas , Técnicas Biosensibles/métodos , Dinitrobencenos , Escherichia coli/genética , Escherichia coli/metabolismo , Sustancias Explosivas/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA